• Title/Summary/Keyword: Radiation Detector

Search Result 868, Processing Time 0.036 seconds

Construction and Performance Evaluation of Digital Radiographic System (이동형 디지털 X선 촬영장치의 구축 및 성능평가)

  • Cho, Hyo-Min;Nam, So-Ra;Lee, Chang-Lae;Jung, Ji-Young;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.144-148
    • /
    • 2007
  • Current digital radiography systems are rapidly glowing in clinical applications. The purpose of this study was to evaluate the characteristics of a mobile digital radiographic system. The performance of the mobile DR system was evaluated by measuring the modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). Measurements were made on a LISTEM Mobix-1000 generator and a Teleoptic PRA Alpha-R4000 detector. Imaging characteristics were measured for these two systems using the IEC-61267 defined RQA5 (kVp: 74, additional filtration: 21 mmAl) radiographic condition. The MTF at 10% was measured as 2.4 cycles/mm and the DQE(0) values for radiation exposure 0.19, 0.5, and 1.3 mR were measured as 54%, 55%, and 76%, respectively. The NPS curves gradually decreased at high spatial frequencies. This high DQE at low frequencies, may be useful for low frequency information. The results suggested that mobile DR system could be integrated with emergency ambulance system in teleradiologic imaging applications.

  • PDF

Image Quality Evaluation of Medical Image Enhancement Parameters in the Digital Radiography System (디지털 방사선시스템에서 영상증강 파라미터의 영상특성 평가)

  • Kim, Chang-Soo;Kang, Se-Sik;Ko, Seong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.329-335
    • /
    • 2010
  • Digital imaging detectors can use a variety of detection materials to convert X-ray radiation either to light or directly to electron charge. Many detectors such as amorphous silicon flat panels, CCDs, and CMOS photodiode arrays incorporate a scintillator screen to convert x-ray to light. The digital radiography systems based on semiconductor detectors, commonly referred to as flat panel detectors, are gaining popularity in the clinical & hospital. The X-ray detectors are described between a-Silicon based indirect type and a-Selenium based direct type. The DRS of detectors is used to convert the x-ray to electron hole pairs. Image processing is described by specific image features: Latitude compression, Contrast enhancement, Edge enhancement, Look up table, Noise suppression. The image features are tuned independently. The final enhancement result is a combination of all image features. The parameters are altered by using specific image features in the different several hospitals. The image in a radiological report consists of two image evaluation processes: Clinical image parameters and MTF is a descriptor of the spatial resolution of a digital imaging system. We used the edge test phantom and exposure procedure described in the IEC 61267 to obtain an edge spread function from which the MTF is calculated. We can compare image in the processing parameters to change between original and processed image data. The angle of the edge with respect to the axes of detector was varied in order to determine the MTF as a function of direction. Each MTF is integrated within the spatial resolution interval of 1.35-11.70 cycles/mm at the 50% MTF point. Each image enhancement parameters consists of edge, frequency, contrast, LUT, noise, sensitometry curve, threshold level, windows. The digital device is also shown to have good uniformity of MTF and image parameters across its modality. The measurements reported here represent a comprehensive evaluation of digital radiography system designed for use in the DRS. The results indicate that the parameter enables very good image quality in the digital radiography. Of course, the quality of image from a parameter is determined by other digital devices in addition to the proper clinical image.

A 3-D Measuring System of Thermoluminescence Spectra and Thermoluminescence of CaSO4 : Dy, P (열자극발광 스펙트럼의 3차원 측정 장치와 CaSO4 : Dy, P의 열자극발광)

  • Lee, Jung-Il;Moon, Jung-Hak;Kim, Douk-Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.71-75
    • /
    • 2001
  • In this paper, a three-dimensional measuring system of thermoluminescence(TL) spectra based on temperature, wavelength and luminescence intensity was introduced. The system was composed of a spectrometer, temperature control unit for thermal stimulation, photon detector and personal computer for control the entire system. Temperature control was achieved by using feedback to ensure a linear-rise in the sample temperature. Digital multimeter(KEITHLEY 195A) measures the electromotive force of Copper-Constantan thermocouple and then transmits the data to the computer through GPIB card. The computer converts this signal to temperature using electromotive force-temperature table in program, and then control the power supply through the D/A converter. The spectrometer(SPEX 1681) is controlled by CD-2A, which is controlled by the computer through RS-232 communication port. For measuring the luminescence intensity during the heating run, the electrometer(KEITHLEY 617) measures the anode current of photomultiplier tube(HAMAMATSU R928) and transmits the data to computer through the A/D converter. And, we measured and analyzed thermoluminescence of $CaSO_4$ : Dy, P using the system. The measuring range of thermoluminescence spectra was 300K-575K and 300~800 nm, $CaSO_4$ : Dy. P was fabricated by the Yamashita's method in Korea Atomic Energy Research Institute(KAERI) for radiation dosimeter. Thermoluminesce spectra of the $CaSO_4$ : Dy, P consist of two main peak at temperature of $205^{\circ}C$, wavelength 476 nm and 572 nm and with minor ones at 658 nm and 749 nm.

  • PDF

Automatic On-Chip Glitch-Free Backup Clock Changing Method for MCU Clock Failure Protection in Unsafe I/O Pin Noisy Environment (안전하지 않은 I/O핀 노이즈 환경에서 MCU 클럭 보호를 위한 자동 온칩 글리치 프리 백업 클럭 변환 기법)

  • An, Joonghyun;Youn, Jiae;Cho, Jeonghun;Park, Daejin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.99-108
    • /
    • 2015
  • The embedded microcontroller which is operated by the logic gates synchronized on the clock pulse, is gradually used as main controller of mission-critical systems. Severe electrical situations such as high voltage/frequency surge may cause malfunctioning of the clock source. The tolerant system operation is required against the various external electric noise and means the robust design technique is becoming more important issue in system clock failure problems. In this paper, we propose on-chip backup clock change architecture for the automatic clock failure detection. For the this, we adopt the edge detector, noise canceller logic and glitch-free clock changer circuit. The implemented edge detector unit detects the abnormal low-frequency of the clock source and the delay chain circuit of the clock pulse by the noise canceller can cancel out the glitch clock. The externally invalid clock source by detecting the emergency status will be switched to back-up clock source by glitch-free clock changer circuit. The proposed circuits are evaluated by Verilog simulation and the fabricated IC is validated by using test equipment electrical field radiation noise

Development of a Spectrum Analysis Software for Multipurpose Gamma-ray Detectors (감마선 검출기를 위한 스펙트럼 분석 소프트웨어 개발)

  • Lee, Jong-Myung;Kim, Young-Kwon;Park, Kil-Soon;Kim, Jung-Min;Lee, Ki-Sung;Joung, Jin-Hun
    • Journal of radiological science and technology
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • We developed an analysis software that automatically detects incoming isotopes for multi-purpose gamma-ray detectors. The software is divided into three major parts; Network Interface Module (NIM), Spectrum Analysis Module (SAM), and Graphic User Interface Module (GUIM). The main part is SAM that extracts peak information of energy spectrum from the collected data through network and identifies the isotopes by comparing the peaks with pre-calibrated libraries. The proposed peak detection algorithm was utilized to construct libraries of standard isotopes with two peaks and to identify the unknown isotope with the constructed libraries. We tested the software by using GammaPro1410 detector developed by NuCare Medical Systems. The results showed that NIM performed 200K counts per seconds and the most isotopes tested were correctly recognized within 1% error range when only a single unknown isotope was used for detection test. The software is expected to be used for radiation monitoring in various applications such as hospitals, power plants, and research facilities etc.

Measuring Circuit Design of RI-Gauge for Compaction Control (성토시공관리용 방사성 동위원소 이용계기의 측정회로설계)

  • Kil, Gyung-Suk;Song, Jae-Yong;Kim, Ki-Joon;Whang, Joo-Ho;Song, Jung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.385-391
    • /
    • 1997
  • An objection of this study is to develop a measuring circuit of a gauge using radioisotope for compaction control. The gauge developed in this study makes use of radioisotope with the activity exempted from domestic atomic law and consists of measuring circuits for gamma-rays and thermal neutrons, a high voltage supply unit, and a microprocessor. To obtain meaningful numbers of pulse counts, parallel five and two circuits are provided for gamma-rays and thermal neutrons, respectively. Being simple in electrical characteristics of G-M detector for gamma-rays, pulses are counted through only a shaping circuit. Very small pulses generated from He- 3 proportional detector for thermal neutrons are amplified to the maximum of 50 [dB] and a window comparator accepts only pulses with meaning. To minimize effects of natural environmental radiation and electrical noise, circuits are electrostatically shielded and pulses made by ripples are eliminated by taking frequency of high voltage supplied to the circuit and pulse height of ripples into consideration. One-chip microprocessor is applied to process various counts, results are stored and the gauage is made capable to communicate with PC. Enough and meaningful numbers of pulses are counted with the prototype gauage for compaction control.

  • PDF

The fabrication and evaluation of CdS sensor for diagnostic x-ray detector application (진단 X선 검출기 적용을 위한 CdS 센서 제작 및 성능 평가)

  • Park, Ji-Koon;Lee, Mi-Hyun;Choi, Young-Zoon;Jung, Bong-Zae;Choi, Il-Hong;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • Recently, various semiconductor compounds as radiation detection material have been researched for a diagnostic x-ray detector application. In this paper, we have fabricated the CdS detecton sensor that has good photosensitivity and high x-ray absorption efficiency among other semiconductor compounds, and evaluated the application feasibility by investigating the detection properties about energy range of diagnostic x-ray generator. We have fabricated the line voltage selector(LCV) for a signal acquisition and quantities of CdS sensor, and designed the voltage detection circuit and rectifying circuit. Also, we have used a relative relation algorithm according to x-ray exposure condition, and fabricated the interface board with DAC controller. Performance evaluation was investigated by data processing using ANOVA program from voltage profile characteristics according to resistive change obtained by a tube voltage, tube current, and exposure time that is a exposure condition of x-ray generator. From experimental results, an error rates were reduced according to increasing of a tube voltage and tube current, and a good properties of 6%(at 90 kVp) and 0.4%(at 320 mA) ere showed. and coefficient of determination was 0.98 with relative relation of 1:1. The error rate according to x-ray exposure time showed exponential reduction because of delayed response velocity of CdS material, and the error rate has 2.3% at 320 msec. Finally, the error rate according to x-ray dose is below 10%, and a high relative relation was showed with coefficient of determination of 0.9898.

Characteristics of Remote Sensors on KOMPSAT-I (다목적 실용위성 1호 탑재 센서의 특성)

  • 조영민;백홍렬
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • Korea Aerospace Research Institute(KARI) is developing a Korea Multi-Purpose Satellite I(KOMPSAT-I) which accommodates Electro-Optical Camera(EOC), Ocean Color Imager(OCI), Space Physics Sensor(SPS) for cartography, ocean color monitoring, and space environment monitoring respectively. The satellite has the weight of about 500 kg and is operated on the sun synchronized orbit with the altitude of 685km, the orbit period of 98 minutes, and the orbit revisit time of 28days. The satellite will be launched in the third quarter of 1999 and its lifetime is more than 3 years. EOC has cartography mission to provide images for the production of scale maps, including digital elevation models, of Korea from a remote earth view in the KOMPSAT orbit. EOC collects panchromatic imagery with the ground sample distance(GSD) of 6.6m and the swath width of 15km at nadir through the visible spectral band of 510-730 nm. EOC scans the ground track of 800km per orbit by push-broom and body pointed method. OCI mission is worldwide ocean color monitoring for the study of biological oceanography. OCI is a multispectral imager generating 6 color ocean images with and <1km GSD by whisk-broom scanning method. OCI is designed to provide on-orbit spectral band selectability in the spectral range from 400nm to 900nm. The color images are collected through 6 primary spectral bands centered at 443, 490, 510, 555, 670, 865nm or 6 spectral bands selected in the spectral range via ground commands after launch. SPS consists of High Energy Particle Detector(HEPD) and Ionosphere Measurement Sensor(IMS). HEPD has mission to characterize the low altitude high energy particle environment and to study the effects of radiation environment on microelectronics. IMS measures densities and temperature of electrons in the ionosphere and monitors the ionospheric irregularities in KOMPSAT orbit.

The Evaluation of Dose Reduction and Quality of Images According to 80 kVp of Scan Mode Change in Pediatric Chest CT (소아 흉부 CT 검사에서 관전압 80 kVp 조건으로 스캔 모드별 방사선량 감소와 화질 평가)

  • Kim, Gu;Kim, Gyeong-Rip;Lee, Eun-Sook;Cho, Hee-Jung;Sung, Soon-Ki;Moon, Seul-ji-a;Kwak, Jong-Hyeok
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.8
    • /
    • pp.284-292
    • /
    • 2019
  • To evaluate the usefulness of pediatric chest CT scans by comparing the dose, examination time, and image quality by applying Helical mode, High-pitch mode, and Volume Axial mode to minimize the radiation exposure and obtain high diagnostic value. Revolution (GE Healthcare, Wisconsin USA) was used to divide PBU-70 phantom into Helical mode, High-pitch mode, and Volume Axial mode. After acquiring images, ROI is set for each image, heart, bone, lung, and back-ground air, and the average value is obtained by measuring CT number (HU) and noise (SD). SNR and CNR were measured and compared with DLP values provided directly by the equipment. Determining statistical significance Statistical analysis was performed using ONE-WAY-ANAOVA using SPSS 21.0. In this experiment, it was possible to inspect at a short time without deterioration of image quality with the lowest dose when using volume axial mode. Although the detector coverage of 16 cm is limited to all pediatric chest CT scans, it is recommended to be actively used in pediatric patients, and further study is needed to apply other test sites in volume axial mode.

The Study of Dose Change by Field Effect on Atomic Number of Shielding Materals in 6 MeV Electron Beam (6 MeV 전자선의 차폐물질 원자번호와 조사야 크기에 따른 선량변화 연구)

  • Lee, Seung Hoon;Kwak, Keun Tak;Park, Ju Kyeong;Gim, Yang Soo;Cha, Seok Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 2013
  • Purpose: In this study, we analyzed how the dose change by field size effects on atomic number of shielding materials while using 6 MeV election beam. Materials and Methods: The parallel plate chamber is mounted in $25{\times}25cm^2$ the phantom such that the entrance window of the detector is flush with the phantom surface. phantom was covered laterally with aluminum, copper and lead which thickness have 5% of allowable transmission and then the doses were measured in field size $6{\times}6$, $10{\times}10$ and $20{\times}20cm^2$ respectively. 100 cGy was irradiated using 6 MeV electron beam and SSD (Source Surface Distance) was 100 cm with $10{\times}10cm^2$ field size. To calculate the photon flux, electron flux and Energy deposition produced after pass materals respectively, MCNPX code was used. Results: The results according to the various shielding materials which have 5% of allowable transmission are as in the following. Thickness change rate with field size of $6{\times}6cm^2$ and $20{\times}20cm^2$ that compared to the field size of $10{\times}10cm^2$ found to be +0.06% and -0.06% with aluminum, +0.13% and -0.1% with copper, -1.53% and +1.92% with lead respectively. Compare to the field size $10{\times}10cm^2$, energy deposition for $6{\times}6cm^2$ and $20{\times}20cm^2$ had -4.3% and +4.85% respectively without shielding material. With aluminum it had -0.87% and +6.93% respectively and with lead it had -4.16% and +5.57% respectively. When it comes to photon flux with $6{\times}6cm^2$ and $20{\times}20cm^2$ of field sizes the chance -8.95% and +15.92% without shielding material respectively, with aluminum the number -15.56% and +16.06% respectively and with copper the chance -12.27% and +15.53% respectively, with lead the number +12.36% and -19.81% respectively. In case of electron flux in the same condition, the number -3.92% and +4.55% respectively without shielding material respectively, with aluminum the number +0.59% and +6.87% respectively, with copper the number -1.59% and +3.86% respectively, with lead the chance -5.15% and +4.00% respectively. Conclusion: In this study, we found that the required thickness of the shielding materials got thinner with low atomic number substance as the irradiation field is increasing. On the other hand, with high atomic number substance the required thickness had increased. In addition, bremsstrahlung radiation have an influence on low atomic number materials and high atomic number materials are effected by scattered electrons.

  • PDF