• Title/Summary/Keyword: Radiation Correction

Search Result 330, Processing Time 0.03 seconds

Lnug Volume을 모델로 한 방사선치료계획 시 불균질 조직 보정에 따른 효과 (Effect of Inhomogeneity correction for lung volume model in TPS)

  • 정세영;이상록;김영범;권영호
    • 대한방사선치료학회지
    • /
    • 제16권1호
    • /
    • pp.57-65
    • /
    • 2004
  • 서론 : 폐암환자의 방사선치료계획 시 불균질 조직 보정(inhomogeneity correction)을 평가하기 위해 폐(lung), (bone) 그리고 뼈를 고정시키기 위해 사용하는 고밀도 물질인 steel 등을 포함한 불균질 조직 보정 팬텀(inhomogeneity correction phantom, ICP)을 자체 제작하였다. 이를 이용하여 방사선치료계획시스템에서 불균질조직 보정 알고리듬에 따른 값들을 비교하고, 또한 실제 측정된 값과 비교, 분석하여 불균질 조직에 따른 선량계산 변화를 평가하고자 하였다. 대상 및 방법 : 영상획득은 전산화단층촬영영상장치(CT, Volume zoom, Germany)와 자체 제작한 불균질 조직 보정팬텀(ICP, pig's vertebra, steel(8.21 g/cm3), cork(0.23 g/cm3))을 사용하였다. 방사선치료계획시스템으로는 Marks Plan(2D)과 XiO(CMS, USA, 3D)를 사용하였고, 측정값과의 비교를 위해서는 선형가속기(CL/1800, Varian, USA)와 이온전리함을 사용하였다. 전산화단층촬영영상장치로부터 획득한 영상을 이용하여 방사선치료계획장치에서 관심점(interest point, IP)에서의 점선량(point dose)과 선량분포를 얻고, 이와 동일한 조건에서 측정을 수행한 후 비교, 분석하였다. 그리고 불균질 조직 보정 알고리듬 사용 유무에 따른 차이와 방사선치료계획장치가 가지고 있는 다양한 불균질 조직 보정 알고리듬 간의 차이도 비교하였다. 결 과 : 불균질 조직 보정 팬텀 내 관심지점에 대한 측정치와 방사선치료계획장치에서 얻은 균질과 불균질 보정된 값을 비교한 결과 폐 제1지점에서의 측정치와 불균질 보정값의 오차는 2D에서 $0.8\%$, 3D에서 $0.5\%$, 스틸 제1지점에서의 측정치와 불균질 보정값의 오차는 2D에서 $12\%$, 3D에서 $5\%$의 오차를 보이나 보정을 하지 않은 값과 측정치의 오차는 각각 $16\%,\;14\%$의 오차가 나는 것을 알 수 있었다. 또한 2D에서 보다는 3D에서의 값들이 오차가 적은 것으로 나타났다. 결 론 : 방사선치료계획 시 조직 내 밀도에 따른 보정이 반드시 이루어져야 하며 보다 정확한 치료계획을 위해서는 2차원 방사선치료계획용 시스템보다는 3차원 방사선치료계획용 시스템을 사용하는 것이 정확한 보정이 가능한 것을 알 수 있었다. 그리고 불균질 조직 보정 알고리듬 간에도 차이가 있어 실제 측정을 통해 가장 적합한 불균질 조직 보정 알고리듬을 선택하는 것이 필수적이라 할 수 있다. 향후 열형광선량계와 필름 선량계를 통한 비교, 분석이 추가적으로 수행되어야 할 것으로 사료된다.

  • PDF

대기복사모형을 이용한 위성영상의 대기보정에 관한 연구 (A Study on Atmospheric Correction in Satellite Imagery Using an Atmospheric Radiation Model)

  • 오성남
    • 대기
    • /
    • 제14권2호
    • /
    • pp.11-22
    • /
    • 2004
  • A technique on atmospheric correction algorithm to the multi-band reflectance of Landsat TM imagery has been developed using an atmospheric radiation transfer model for eliminating the atmospheric and surface diffusion effects. Despite the fact that the technique of satellite image processing has been continually developed, there is still a difference between the radiance value registered by satellite borne detector and the true value registered at the ground surface. Such difference is caused by atmospheric attenuations of radiance energy transfer process which is mostly associated with the presence of aerosol particles in atmospheric suspension and surface irradiance characteristics. The atmospheric reflectance depend on atmospheric optical depth and aerosol concentration, and closely related to geographical and environmental surface characteristics. Therefore, when the effects of surface diffuse and aerosol reflectance are eliminated from the satellite image, it is actually corrected from atmospheric optical conditions. The objective of this study is to develop an algorithm for making atmospheric correction in satellite image. The study is processed with the correction function which is developed for eliminating the effects of atmospheric path scattering and surface adjacent pixel spectral reflectance within an atmospheric radiation model. The diffused radiance of adjacent pixel in the image obtained from accounting the average reflectance in the $7{\times}7$ neighbourhood pixels and using the land cover classification. The atmospheric correction functions are provided by a radiation transfer model of LOWTRAN 7 based on the actual atmospheric soundings over the Korean atmospheric complexity. The model produce the upward radiances of satellite spectral image for a given surface reflectance and aerosol optical thickness.

고 에너지 광자선의 조사선량 측정 시 전리함의 스템효과 보정계수 (Stem Effect Correction Factor of Ionization Chamber in Exposure Measurements of High Energy Photons)

  • 박철우;이재승;권대철;차동수;김진수;김경근
    • 대한디지털의료영상학회논문지
    • /
    • 제12권1호
    • /
    • pp.51-58
    • /
    • 2010
  • Ionization chambers often exhibit a stem effect, caused by interactions of radiation with air near the chamber end, or with dielectric in the chamber stem or cable. In this study measured stem effect correction factor for length of ionization chamber from medical linear accelerator recommend to with the use of stem correction method. For a model of the Farmer-type chamber, were used to calculate the beam quality correction factor. These interactions contribute to the apparent measured exposure. Additionally, it needs to consider ionization chamber use of small volume and stem effect of cable by a large field. Linear accelerator generated photons energy and increased dose repeatedly measured by using stem correction method. Stem effect was dependence of the energy and increases with photon energy conditions improved of beam quality. In conclusion, stem effect correction factor was measured within 0.4% calculated according to the exposures stem length and also supposed to determined below 1% of another stem correction method.

  • PDF

수평면 전일사량 측정데이터 보정에 관한 실험적 연구 (An Experimental Study on the Scale Correction of Measured Horizontal Global Solar Radiation)

  • 송수원
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.25-31
    • /
    • 2010
  • A Precision Spectral Pyranometer (PSP) is mainly used as a reference to calibrate other pyranometers due to its high accuracy and sensitivity in response to the spectrum wavelength range of 0.285 ${\mu}$ to 2.8 ${\mu}$, while the sensitivity of photovoltaic-type Li-Cor pyranometer is limited within a certain spectral range from 0.4 ${\mu}$ to 1.1 ${\mu}$. In this study, two Eppley PSPs($PSP_1$ and $PSP_2$) were first compared to the calibrated Eppley PSPs from National Renewable Energy Laboratory (NREL), resulting in two linear correction factors based on the comparison between the logger output (V) from the test PSP and the solar radiation (W/m2) from the NREL PSP. The Li-Cor pyranometer used in this study was then corrected based on the comparison of measured solar radiation ($W/m^2$) from the corrected $PSP_1$ and the Li-Cor pyranometer. In addition, instrument scale corrections were also performed for the PSPs and the Li-Cor from the transmitter to the data logger. From the comparisons, a linear correction factor (1.0214) with R=0.9998 was developed for the scale correction between$PSP_1$ and $PSP_2$, while the Li-Cor pyranometer has a scale(1.0597) and offset (32.046) with R=0.9998 against$PSP_1$. As a result, it was identified that there were good agreements within ${\pm}$ 10 W/ $m^2$ between Eppley $PSP_1$ vs. $PSP_2$ solar radiation and within ${\pm}$ 20 W/$m^2$ between$PSP_1$ vs Li-Cor solar radiation after the empirical scale corrections developed in this study.

Atmospheric Correction of Sentinel-2 Images Using Enhanced AOD Information

  • Kim, Seoyeon;Lee, Yangwon
    • 대한원격탐사학회지
    • /
    • 제38권1호
    • /
    • pp.83-101
    • /
    • 2022
  • Accurate atmospheric correction is essential for the analysis of land surface and environmental monitoring. Aerosol optical depth (AOD) information is particularly important in atmospheric correction because the radiation attenuation by Mie scattering makes the differences between the radiation calculated at the satellite sensor and the radiation measured at the land surface. Thus, it is necessary to use high-quality AOD data for an appropriate atmospheric correction of high-resolution satellite images. In this study, we examined the Second Simulation of a Satellite Signal in the Solar Spectrum (6S)-based atmospheric correction results for the Sentinel-2 images in South Korea using raster AOD (MODIS) and single-point AOD (AERONET). The 6S result was overall agreed with the Sentinel-2 level 2 data. Moreover, using raster AOD showed better performance than using single-point AOD. The atmospheric correction using the single-point AOD yielded some inappropriate values for forest and water pixels, where as the atmospheric correction using raster AOD produced stable and natural patterns in accordance with the land cover map. Also, the Sentinel-2 normalized difference vegetation index (NDVI) after the 6S correction had similar patterns to the up scaled drone NDVI, although Sentinel-2 NDVI had relatively low values. Also, the spatial distribution of both images seemed very similar for growing and harvest seasons. Future work will be necessary to make efforts for the gap-filling of AOD data and an accurate bi-directional reflectance distribution function (BRDF) model for high-resolution atmospheric correction. These methods can help improve the land surface monitoring using the future Compact Advanced Satellite 500 in South Korea.

MONTE CARLO SIMULATION FOR CORRECTION OF IONIZATION CHAMBER WALL

  • Kurosawa, Tadahiro;Takata, Nobuhisa;Koyama, Yasuji
    • Journal of Radiation Protection and Research
    • /
    • 제26권3호
    • /
    • pp.271-273
    • /
    • 2001
  • In precise measurement of air kerma with cavity ionization chambers, the effect of wall attenuation and scatter are corrected by Kwall and that of nonuniformity by Knu. Using the EGS4 code, we calculated these two correction factors. Correction factors calculated for two different-sized cylindrical ionization chamber differ by up to 0.7% from those obtained by measurements.

  • PDF

PIXEL-BASED CORRECTION METHOD FOR GAFCHROMIC®EBT FILM DOSIMETRY

  • Jeong, Hae-Sun;Han, Young-Yih;Kum, O-Yeon;Kim, Chan-Hyeong;Ju, Sang-Gyu;Shin, Jung-Suk;Kim, Jin-Sung;Park, Joo-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.670-679
    • /
    • 2010
  • In this paper, a new approach using a pixel-based correction method was developed to fix the non-uniform responses of flat-bed type scanners used for radiochromic film dosimetry. In order to validate the method's performance, two cases were tested: the first consisted of simple dose distributions delivered by a single port; the second was a complicated dose distribution composed of multiple beams. In the case of the simple individual dose condition, ten different doses, from 8.3 cGy to 307.1 cGy, were measured, horizontal profiles were analyzed using the pixel-based correcton method and compared with results measured by an ionization chamber and results corrected using the existing correction method. A complicated inverse pyramid dose distribution was made by piling up four different field shapes, which were measured with GAFCHROMIC$^{(R)}$EBT film and compared with the Monte Carlo calculation; as well as the dose distribution corrected using a conventional method. The results showed that a pixel-based correction method reduced dose difference from the reference measurement down to 1% in the flat dose distribution region or 2 mm in a steep dose gradient region compared to the reference data, which were ionization chamber measurement data for simple cases and the MC computed data for the complicated case, with an exception for very low doses of less than about 10 cGy in the simple case. Therefore, the pixel-based scanner correction method is expected to enhance the accuracy of GAFCHROMIC$^{(R)}$EBT film dosimetry, which is a widely used tool for two-dimensional dosimetry.

다층 상세 태양복사 모델에 의한 단층 태양복사 모델의 보정 (Correction of One-layer Solar Radiation Model by Multi-layer Line-by-line Solar Radiation Model)

  • 지준범;이원학;조일성;이규태
    • 대기
    • /
    • 제21권2호
    • /
    • pp.151-162
    • /
    • 2011
  • One-layer solar radiation(GWNU; Gangneung-Wonju National University) model is developed in order to resolve the lack of vertical observations and fast calculation with high resolution. GWNU model is based on IQBAL(Iqbal, 1983) and NREL(National Renewable Energy Laboratory) methods and corrected by precise multi-layer LBL(Line-by-line) model. Input data were used 42 atmospheric profiles from Garand et al.(2001) for calculation of global radiation by the Multi-layer and one-layer solar radiation models. GWNU model has error of about -0.10% compared with LBL model while IQBAL and NREL models have errors of about -3.92 and -2.57%, respectively. Global solar radiation was calculated by corrected GWNU solar model with satellites(MODIS, OMI and MTSAT-1R), RDPS model prediction data in Korea peninsula in 2009, and the results were compared to surface solar radiation observed by 22 KMA solar sites. All models have correlation($R^2$) of 0.91 with the observed hourly solar radiation, and root mean square errors of IQBAL, NREL and GWNU models are 69.16, 69.74 and $67.53W/m^2$, respectively.