• Title/Summary/Keyword: Radiant Temperature

Search Result 307, Processing Time 0.031 seconds

Radiant Energy Filtering to Enhance High Temperature Measurement by a Thermography System (고온 계측 열화상 시스템 구현을 위한 복사에너지 필터링 연구)

  • Yoon, Seok Tae;Cho, Yong Jin;Jung, Ho Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.466-473
    • /
    • 2016
  • In a shipbuilding process, thermal damage to the ship structure at the rear end results from an excessive heat input and conduction during welding process. To prevent such damage, appropriate control of the heat input, based on welding temperature measurement, is required. For temperature measurement, contact and non-contact methods are available; the thermography system is a popular non-contact temperature measurement. When the intensity of radiation from a high-temperature object is excessive, however, detecting the sensors of ordinary thermography systems leads to an inability in measuring the temperature due to saturation. Hence, this study suggests use of a neutral density filter that prevents an excessive amount of radiation from being accumulated in a thermography system, and thus makes it possible to quantitatively measure an object's temperature as high as $3000^{\circ}C$.

A Study on the Numerical Analysis of Heat Sink for Radiant Heat of Automotive LED Head Lamp (자동차 LED Head Lamp의 방열을 위한 Heat Sink의 수치해석적 연구)

  • Choi, Byung-Hui;Kim, Chang-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4398-4404
    • /
    • 2012
  • This thesis was conducted a numerical analysis on the radiant heat performance according to factors of design of heat sink for cooling of the automotive LED head lamp. The heat sinks were designed with 5 different types to fit the limited internal space by formula based on an existing product (Type 1). Designed heat sinks of five types were analyzed by ANSYS CFD V12.1, and the analysis results were compared with the existing type. The results of simulation were analyzed temperature distribution and average temperature, air flow characteristic, heat flux etc. This thesis was researched on the correlation of the cooling performance according to the heat sink structure and the fin shape. Through numerical analysis, could be confirmed heat sink Type 2 as the best results.

The Study on Coatings to Improve the Radiative Heat Dissipation of Aluminum Alloy (알루미늄 합금의 복사방열향상을 위한 코팅연구)

  • Seo, Mihui;Kim, Donghyun;Lee, Junghoon;Chung, Wonsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.208-215
    • /
    • 2013
  • The aim of the present study was to improve the radiative heat dissipation of aluminum alloy, Al 1050. Resin/CuO coating and Cu/CuO composite plating were applied on aluminum alloy to improve the radiative heat dissipation. Resin/CuO coating was made using thermosetting silicon resin and Cu/CuO composite plating was made in pyrophosphate copper plating bath. Radiant heat flux($W/m^2$) was measured by self-produced radiant heat measurement device to compare each specimen. The cross section of specimen and chemical bonding of surface were analyzed by FE-SEM, XPS and FT-IR. As a result, radiant heat of Resin/CuO coating was higher than Cu/CuO composite plating due to the adhesion with aluminum plate and the difference in chemical bonding. But, Both of them were higher than aluminum alloy. In order to confirm the result of experiment, aluminum plate, Resin/CuO coating and Cu/CuO composite plating sample were applied LED and measured the LED temperature. As a result, LED temperature of samples were matched previous results and confirmed coated samples were lower about 10 degrees than the aluminum alloy.

The Effects of Heat Diffusion Fin on the Thermal Behavior and Performance of Radiant Heatomg Panel (방열핀이 난방용 패널의 열적거동 및 성능에 미치는 영향)

  • 이태원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2486-2493
    • /
    • 1994
  • Transient heat transfer characteristics in th radiant heating panel with heat diffusion fin were predicted by numerical analysis. Thermal behaviors of panel, such as temperature distributions in panel and convective and radiative heat fluxes in panel surface with advance of time, were obtained for several important parameters. The performance and thermal comfort of heating panel were studied and compared for various design conditions, such as pipe pitch, area ratio and thermal conductivity of optimal design of the new heating panels with heat diffusion fin. It was concluded that the efficient area ratio of heat diffusion fin is about 0.5, and the greater the thermal conductivity of fin is, the better the performance of panel is.

A Study on the Radiant Emission Characteristics of Isothermal and Diffuse Equi-Lateral Trapezoid Groove Cavity (等溫 - 擴散 等邊사다리꼴 홈 Cavity 의 輻射放射率 特性 에 관한 硏究)

  • 박희용;이승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.294-300
    • /
    • 1983
  • The purpose of this study is to investigate the radiant emission characteristics of diffuse equi-lateral trapezoid groove cavity for the case of uniform surface temperature. The theoretically developed results for the apparent emissivity are presented and the values of apparent emissivity for the trapezoid groove cavity were compared with those of the V-groove cavity. In the experimental part of this study, the test models were manufactured from 100x 100x 15mm copper plates on which the equi-lateral trapezoid cavities were grooved. The inclined angles of the groove were 30,45 and 60 degrees and the ratio of groove depth to base surface width varied from 1 to 5 for each inclined angle. As a result of this work, it was found that the trapezoid groove cavity was more general form of V-groove and the apparent emissivity of trapezoid groove cavity was greater than that of V-groove cavity. The resulting equation for the apparent emissivity in the trapezoid groove cavity was valid for the angles greater than 40 degrees.

Study on the Development of Steam Boiler using Carbon-fiber Heater (탄소섬유 발열체를 이용한 증기 보일러 개발에 관한 연구)

  • Kim, Bu-Ahn;Kang, Suk-Jun;Choi, Young-Min;Moon, Chang-Kown
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.30-36
    • /
    • 2017
  • Carbon fiber shows excellent heat generation value and thermal efficiency comparing with the metallic materials because of its far infrared-rays and radiant heat. So, high performance and economic steam boiler system for the industry can be manufactured by using the carbon fiber heater. The far infrared ray radiation rate was more than 90 % of carbon fiber. Steam boiler system with carbon fiber heater in this study is made up of heating section. In the proof test of steam boiler, the aimed temperature and dwelling time were at $500^{\circ}C$ for 8,000 hours, $600^{\circ}C$-3,000 hours, and $700^{\circ}C$-1,000 hours. The temperature rise rate of steam boiler with carbon fiber heater was about 40% faster than that of the conventional boiler.

The Experimental Study of the Heat Flux and Energy Consumption on Variable Flow Rate for Secondary Side of DHS (지역난방 2차측 유량변화가 내부 열유속 및 에너지소비량에 미치는 영향에 관한 실험적 연구)

  • Hong, Seong-Ki;Cho, Sung-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.247-253
    • /
    • 2015
  • The presented work demonstrates the effects of flow rate on the secondary side of DHS (District Heating System). Increasing flow rate at the secondary side of DHS decreases energy consumption and time to reach the set-point of the heated room while increasing heat flux on the floor in the heating space. When flow rate increases, the overall heat transfer rate of radiant floor also increases. However, the results also show overall heat transfer rateto not increased linearly and thus the existence of an optimal flow rate for the secondary side of DHS. Control of the radiant floor with hot water may be more effectively accomplished with a combined control strategy that includes heat flux and a temperature set-point. This experimental analysis has been performed using a lab-scaled DHS pilot plant located at Jeonju University in Korea.

Performance Evaluation of Heat Radiant for 50W LED by the CNT Thermal Interface Material (CNT 열전달 물질에 의한 50W LED의 방열 성능평가)

  • Cho, Young-Tae;Lee, Choong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.23-29
    • /
    • 2014
  • In this study, cooling and heat-transfer tests are performed to compare and evaluate the thermal conductivity in a prepared CNT TIM (thermal interface material). A polymerized CNT heat-transfer resin and commercial thermal grease (Shinetsu G-747) were applied for a comparison test in both cases. Cooling experiments with an aluminum foil specimen were performed in order to measure the temperature distribution using an infrared camera, and in heat radiation experiments, performance testing of the thermal conductivity was conducted using high-power LEDs. Carbon resin with the polymerization of graphite and carbon black, and CNT-polymerized CNT resin with graphite and carbon black were tested and compared with using G-747. It was found that the cooling performance and the heat transfer ability in both the carbon resin and the CNT-polymerized CNT resin were greater than those of G-747 because the temperature by 5. $0^{\circ}C$ in both cases appeared lower than that of the G-747.

The Characteristics of Indoor Temperature and Airflow Distribution for Air Supply and Return System in Dome Stadium (돔경기장의 급배기방식에 따른 기류분포 및 실내온도 특성)

  • Chae, Mun-Byoung;Yang, Jeong-Hoon;Seok, Ho-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.434-439
    • /
    • 2008
  • Dome stadiums give thermal unpleasant feeling to occupants because of the radiant heat and the indoor and outdoor haet exchange from roogs or lightweight building envelopes of sidewalls. This study analyzed the indoor temperature and velocity distribution according to various air supply and return sustems in dome stadiums in summer.

  • PDF

Novel Accuracy Enhancement Method for Absolute Temperature Measurement Using TEC-LESS Control in Uncooled Thermal Imaging (비냉각 열상시스템에서 TEC-Less를 이용한 절대온도 측정 정밀도 향상 기법)

  • Han, Joon Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.41-47
    • /
    • 2012
  • Every object over $O^{\circ}K$ emits radiant energy based on its own temperature. Uncooled thermal imaging system displays the detected incident radiant energy as an image by signal processing. Recently, the uncooled thermal imaging system is applied to various areas such as medical, industrial, and military applications. Also, several researches are in progress to find new applications of the uncooled thermal imaging system. In this paper, we present effective method for controlling TEC-less detector in the uncooled thermal imaging system and also present the efficient control scheme for maximizing the accuracy of temperature measurement. The proposed scheme is to apply TEC-less and temperature detection algorithm in Uncooled thermal imaging system. In results of tests performed by using the actual chamber, we acquired images of better quality than the former system and temperature measurement accuracy was improved to less than $1^{\circ}C$.