• Title/Summary/Keyword: Radial thrust

Search Result 76, Processing Time 0.029 seconds

Radial Thrust of Single-Blade Centrifugal Pump

  • Nishi, Yasuyuki;Fukutomi, Junichiro;Fujiwara, Ryota
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.4
    • /
    • pp.387-395
    • /
    • 2011
  • Single-blade centrifugal pumps are widely used as sewage pumps. However, the impeller of a single-blade pump is subjected to strong radial thrust during pump operation because of the geometrical axial asymmetry of the impeller. Therefore, to improve pump reliability, it is necessary to quantitatively understand radial thrust and elucidate the behavior and mechanism of thrust generating. This study investigates the radial thrust acting up on a single-blade centrifugal impeller by conducting experiments and CFD analysis. The results show that the fluctuating component of radial thrust increases as the flow rate deviates from the design flow rate to low or high value. Radial thrust was modeled by a combination of three components, inertia, momentum, and pressure by applying an unsteady conservation of momentum to the impeller. The sum of these components agrees with the radial thrust calculated by integrating the pressure and the shearing stress on the impeller surface. The behavior of each component was shown, and the effects of each component on radial thrust were clarified. The pressure component has the greatest effect on the time-averaged value and the fluctuating component of radial thrust. The time-averaged value of the inertia component is nearly 0, irrespective of the change in the flow rate. However, its fluctuating component has a magnitude nearly comparable with the pressure component at a low flow rate and slightly decreased with the increase in flow rate.

Thrust Estimation Acting on Rotor of LOX Pump for Liquid Rocket Engine (액체로켓엔진용 산화제펌프 회전체의 하중 예측)

  • Kim, Dae-Jin;Choi, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.98-104
    • /
    • 2015
  • Excessive thrust acting on the rotor of pump can cause the damage of pump or the decrease of pump lifetime. Therefore, for ensuring the safety of LOX pump of a liquid rocket engine, the thrust of pump rotor is estimated by similarity tests. Axial thrust is indirectly measured by an axial thrust measurement unit positioned outside pump. Radial thrust is calculated based on pressure distribution of volute scroll. As a result, axial and radial thrust are increased when the flowrate of pump decreases. However, both thrusts do not affect the stability of pump rotor since their values are not large.

Development of a HDD Spindle Motor Using Passive Magnet Bearing and Fluid Dynamic Journal Bearing (수동형 자기 베어링과 유체 동압 저널베어링을 이용한 HDD용 스핀들 모터 개발)

  • Lee, Chung-Ill;Kim, Hak-Woon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.473-477
    • /
    • 2005
  • This paper presents a highly efficient HDD (Hard Disk Drive) spindle motor with a passive magnetic thrust bearing and a fluid dynamic journal bearing and its effectiveness is verified through experiment. It eliminates the mechanical friction loss of a thrust bearing which is around 18% of total power consumption of a 3.5' HDD spindle motor, by replacing a conventional fluid dynamic thrust bearing with a passive magnetic thrust bearing. The passive magnetic thrust bearing using permanent magnets is inherently unstable in radial direction. However, the radial fluid dynamic force of the fluid dynamic journal bearing counterbalances the radial magnetic force of magnetic thrust bearing to achieve the stability as the motor spins up. It has less or equivalent runout and less flying height than the conventional spindle motor.

  • PDF

Numerical Investigation on Hydrodynamic Characteristics of a Centrifugal Pump with a Double Volute at Off-Design Conditions

  • Shim, Hyeon-Seok;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.218-226
    • /
    • 2017
  • Severe radial thrust under off-design operating conditions can be a harmful factor for centrifugal pumps. In the present work, effects of geometry of a double volute casing on the hydrodynamic performance of a centrifugal pump have been investigated focusing on off-design conditions. Three-dimensional steady Reynolds-averaged Navier-Stokes analysis was carried out by using shear stress transport turbulence model. Numerical results for the hydrodynamic performance of the centrifugal pump were validated compared with experimental data. The hydraulic efficiency and radial thrust coefficient were used as performance parameters to evaluate the hydrodynamic characteristics of the centrifugal pump. The cross-sectional area ratio of the volute casing, the expansion coefficient of the rib structure, the distance between the rib starting point and volute entrance, and radius and width of the volute entrance, and length of the rib structure, were selected as geometric parameters. Results of the parametric study show that the performance parameters are significantly affected by the geometric variables and operating conditions. Optimal configurations of the double volute casing based on the design of experiments technique show outstanding performance in terms of the efficiency and radial thrust coefficient.

Effects of Double Volute on Performance of A Centrifugal Pump (원심펌프의 성능에 대한 더블 볼류트의 영향)

  • Shim, Hyeon-Seok;Heo, Man-Woong;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • In this study, a parametric study of a centrifugal pump with double volute has been performed numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The shear stress transport model was selected as turbulence closure through turbulence model test. The finite volume method and unstructured grid system were used for the numerical analysis. The optimal grid system in the computational domain was determined through a grid dependency test. The expansion coefficient, circumferential and radial starting positions and length of divider were selected as the geometric parameters to be tested. And, the hydraulic efficiency and the radial thrust coefficient were considered as performance parameters. It was found that the radial thrust and hydrualic efficiency are more sensitive to the expansion angle and circumferential starting position of the divider than the other geometrical parameters.

A Study on the Thrust Force of a Narrowly Spaced Disk Valve (좁은 틈새 원판 밸브의 추력에 관한 연구)

  • Jeong, Hyo-Min;Kim, Si-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.1
    • /
    • pp.30-38
    • /
    • 1987
  • One of the important characteristics of a disk valve is the thrust force. This thrust force has close relationship to the clearance between valve and valve seat in the disk valve. When the clearance is very small, it is very important to analyze the thrust force. This paper deals with the variation of the thrust force by comparing the experimental ed results and theoretical results in accordance with d the valve clearance. In case of the theoretical problems, the pressure gradient of the radial flow in a narrowly spaced disks was calculated by Sui Lin and Pai-Mow Lee already. Therefore, the thrust force of the disk valve was computed by utilizing this pressure gradient in the radial flow. In the experiment, the hydraulic oil which has high viscosity was used. Making the comparative study of the calculated results and the experimental results, the characteristics of the thrust force in the disk valve were investigated. The results obtained are as follows: 1. When the disk valve clearance was comparatively small, the experimental values had fairly good agreement with the calculated values independently of inlet pressure and valve size. 2. When the disk valve size was constant in the wide range of the disk valve clearance, the lower the inlet pressure was, the better the agreement between the experimental values and the calculated values was. 3. In case of the small clearance, the thrust force was depended on the outer diameter of the disk valve. In opposite case the thrust force was constant as the disk valve size varied.

  • PDF

Design of Magnetic Levitating Flywheel Energy Storage System (자기부상형 플라이휠 에너지 저장 장치의 자기베어링 시스템 설계)

  • Yoo, S.;Mo, S.;Choi, S.;Lee, J.;Han, Y.;Noh, M.D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.963-967
    • /
    • 2007
  • Flywheel energy storage systems (FESS) have advantages over other types of energy storage methods due to their infinite charge/discharge cycles and environmental friendliness. The system has two radial bearings and one hybrid-thrust bearing. Thrust hybrid-type bearing use permanent magnet to relieve gravity load. The radial bearings were designed to provide sufficient force slew rate considering the unbalance disturbance at the operating speeds. In this paper, we will derive dynamic model of hybrid-type bearing using permanent magnet for thrust bearing and present simulation and stability of the model.

  • PDF

Analysis and Experimental Verification of the Moving-Magnet Linear Actuator with Cylindrical Halbach and Radial Array

  • Jang, Seok-Myeong;Park, Jang-Young;Lee, Sung-Ho;Cho, Han-Wook;Jang, Won-Bum
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.4
    • /
    • pp.179-187
    • /
    • 2003
  • In the machine tool industry, direct drive linear motor technology is of increasing interest as a means to achieve high acceleration and to increase reliability. This paper analyzes and compares the characteristics of the tubular linear actuator with the cylindrical Halbach and radial array, respectively. A tubular linear actuator with cylindrical Halbach array, consisting of parallel magnetized arc segments instead of ideal radial and axial magnetized rings, is manufactured. The magnetic field solutions due to the PMs and to the currents are established analytically in terms of vector potential, using the 2-D cylindrical coordinate system. Motor thrust, flux linkage and back emf are then derived. Thrust characteristics according to such design parameters as magnet height and air gap length are also given. The results are validated extensively by comparison with finite element analysis (FEA). Test results such as thrust measurements are also given to confirm the analysis.

Study on the Control of the Axial Thrust of a Pump for Liquid Rocket Engine Turbopumps (액체로켓엔진 터보펌프용 펌프의 축추력 조절에 관한 연구)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Dae-Jin;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.36-40
    • /
    • 2012
  • The magnitude of the axial thrust acting on pump bearings has a great influence on the operational reliability and service life of a pump for turbopumps. In the present study, radial vanes are introduced to the pump casing to control the axial thrust by changing the cavity pressure between the impeller and the casing. To investigate the effect of the vanes on the axial thrust of the pump, experimental and computational studies were performed with and without the vanes. It is shown that the vanes reduce the cavity pressure by preventing the flow from rotating with the impeller. Experimental and computational results show similar trend for the axial thrust difference between two cases with and without the vanes. The results show that the cavity vanes are very effective in controlling the magnitude of the axial thrust.

Study on transient performance of tilting-pad thrust bearings in nuclear pump considering fluid-structure interaction

  • Qiang Li;Bin Li;Xiuwei Li;Quntao Xie;Qinglei Liu;Weiwei Xu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2325-2334
    • /
    • 2023
  • To study the lubrication performance of tilting-pad thrust bearing (TPTBs) during start-up in nuclear pump, a hydrodynamic lubrication model of TPTBs was established based on the computational fluid dynamics (CFD) method and the fluid-structure interaction (FSI) technique. Further, a mesh motion algorithm for the transient calculation of thrust bearings was developed based on the user defined function (UDF). The result demonstrated that minimum film thickness increases first and then decreases with the rotational speed under start-up condition. The influence of pad tilt on minimum film thickness is greater than that of collar movement at low speed, and the establishment of dynamic pressure mainly depends on pad tilt and minimum film thickness increases. As the increase of rotational speed, the influence of pad tilt was abated, where the influence of the moving of the collar dominated gradually, and minimum film thickness decreases. For TPTBs, the circumferential angle of the pad is always greater than the radial angle. When the rotational speed is constant, the change rate of radial angle is greater than that of circumferential angle with the increase of loading forces. This study can provide reference for improving bearing wear resistance.