• Title/Summary/Keyword: Radial shearing interferometers

Search Result 2, Processing Time 0.014 seconds

High-order Reduced Radial Zernike Polynomials for Modal Reconstruction of Wavefront Aberrations in Radial Shearing Interferometers

  • Tien Dung Vu;Quang Huy Vu;Joohyung Lee
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.692-700
    • /
    • 2023
  • We present a method for improving the accuracy of the modal wavefront reconstruction in the radial shearing interferometers (RSIs). Our approach involves expanding the reduced radial terms of Zernike polynomials to high-order, which enables more precise reconstruction of the wavefront aberrations with high-spatial frequency. We expanded the reduced polynomials up to infinite order with symbolic variables of the radius, shearing amount, and transformation matrix elements. For the simulation of the modal wavefront reconstruction, we generated a target wavefront subsequently, magnified and measured wavefronts were generated. To validate the effectiveness of the high-order Zernike polynomials, we applied both low- and high-order polynomials to the wavefront reconstruction process. Consequently, the peak-to-valley (PV) and RMS errors notably decreased with values of 0.011λ and 0.001λ, respectively, as the order of the radial Zernike polynomial increased.

Shearing Interferometry: Recent Research Trends and Applications

  • Ki-Nam Joo;Hyo Mi Park
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.325-336
    • /
    • 2023
  • We review recent research related to shearing interferometry, reported over the last two decades. Shearing interferometry is categorized as azimuthal, radial, or lateral shearing interferometers by its fundamental principle to generate interference. In this review the research trends for each technique are provided, with a summary of experimental results containing theoretical background, the optical configuration, analysis, and perspective on its application fields.