• Title/Summary/Keyword: Radial ply tire

Search Result 16, Processing Time 0.019 seconds

VIRTUAL PREDICTION OF A RADIAL-PLY TIRE'S IN-PLANE FREE VIBRATION MODES TRANSMISSIBILITY

  • CHANG Y. P.;EL-GINDY M.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.149-159
    • /
    • 2005
  • A full nonlinear finite element P185/70Rl4 passenger car radial-ply tire model was developed and run on a 1.7-meter-diameter spinning test drum/cleat model at a constant speed of 50 km/h in order to investigate the tire transient response characteristics, i.e. the tire in-plane free vibration modes transmissibility. The virtual tire/drum finite element model was constructed and tested using the nonlinear finite element analysis software, PAM-SHOCK, a nonlinear finite element analysis code. The tire model was constructed in extreme detail with three-dimensional solid, layered membrane, and beam finite elements, incorporating over 18,000 nodes and 24 different types of materials. The reaction forces of the tire axle in vertical (Z axis) and longitudinal (X axis) directions were recorded when the tire rolled over a cleat on the drum, and then the FFT algorithm was applied to examine the transient response information in the frequency domain. The result showed that this PI 85/70Rl4 tire has clear peaks of 84 and 45 Hz transmissibility in the vertical and longitudinal directions. This result was validated against more than 10 previous studies by either theoretical or experimental approaches and showed excellent agreement. The tire's post-impact response was also investigated to verify the numerical convergence and computational stability of this FEA tire model and simulation strategy, the extraordinarily stable scenario was confirmed. The tire in-plane free vibration modes transmissibility was successfully detected. This approach was never before attempted in investigations of tire in-plane free vibration modes transmission phenomena; this work is believed to be the first of its kind.

A Study of the Dynamic Characteristics of a Passenger Radial Tire (승용차용 레이디얼 타이어의 동적 특성에 관한 연구)

  • 김두만;김상욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.724-734
    • /
    • 1986
  • The dynamic characteristics of a passenger radial tire were studied by the analytical method and the experiments. The purpose of this study is to obtain the natural frequencies and the mode shapes of a 2 ply steel belt radial tire fixed on the wheel in order to give datum of the dynamic design of tire. The governing equations are derived with the energy method. The composite toroidal finite elements with three degrees of freedom at each node are defined by specifying geometry, internal displacement functions, strain displacement and stress displacement relationships. In order to verify the capability of the present analysis, the natural frequencies and mode shapes of the passenger radial tire are obtained experimentally by using the multi-channel F.F.T. analyser and compared the numerically obtained values. The results show that the analytically obtained values are in good agreement with the experiment and in addition they are in line with the Pott's experimental results.

Measurements of Soil Deformation Using 3-Dimensional Form Determination (3차원 형상계측법을 이용한 토양변형 측정)

  • 전형규
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.409-414
    • /
    • 2001
  • This paper reports a technique for measuring a three-dimensional soil deformation and a simplified method to determine the three-dimensional contact area of agricultural tires in a soil bin. A Pirelli 12.4R28 radial-ply tire was used on soft soil. Effects of dynamic load and inflation pressure were determined using the equipment for measuring soil deformation on the soil surface. Soil deformation measurements were made under three conditions of over-load (59kPa-14.2kN), rated-load (108kPa-11.8kN) and under-load (157kPa-9.3kN) in the combinations of the inflation pressures (kPa) and the tire load (kN). The results from three conditions were shown that the contact area of the over-load increased considerably bigger than those of the rated-load and the under-load. Therefore, to regulate soil deformation, the inflation pressure and the tire load should be set according to the soil conditions.

  • PDF

A Study on the tire structure-borne sound (타이어 구조 진동음에 관한 연구)

  • Chi, Chang-Heon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.80-91
    • /
    • 1995
  • A theoretical models has been prepared which describes the noise generated by tire/road interaction for the tire structure-borne sound analysis. The model begin with a set of thin shell equations describing the motion of the belt of a radial ply tire, as drived by Bohm('mechanisms of the belted tire', Igeniur-Archiv, XXXV, 1966). Structural quantities required for these equations are derived from material properties of the tire. The rolling shape of a tire is computed from the steady-state limit of these equations. Vibrational response of the tire is treated by the full dependent shell equations. The force input at the tire/road interface is calculated on the basis of tread geometry and distribution of contact patch pressure. Radiation of noise is calculated by a simpson integral. Using the programs, the effect on noise of various tire design variations is computed and discussed. Trends which lead to quiet tire design are identified.

  • PDF

The Effect of Dynamic Load, Inflation Pressure and Number of Passes of Tire on Soil Compaction under the Tire (타이어의 동하중, 공기압 및 통과횟수가 토양다짐에 미치는 영향)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • This study was carried out to investigate experimentally the effect of three factors(dynamic load, inflation pressure and number of passes of tire) on soil compaction under the tire. The experiment were conducted with a 6.00R14 radial-ply tire for sandy loam soil using soil bin system. To evaluate the effect of three factors on soil compaction under the tire, the sinkage. density and volume of soil under the tire were measured fur the three levels of dynamic load(1.17kN, 2.35kN and 3.53kN), for the three levels of tire inflation pressure(103.42kPa, 206.84kPa and 413.67kPa), and for three different number of passes(1, 3 and 5). The results of this study can be summarized as follows : 1. As dynamic load, inflation pressure and number of passes of the tire increased, soil sinkage and density increased. and volume of soil decreased. Thus increase in dynamic load, inflation pressure and number of passes of the tire would increase soil compaction. 2. The effect of tire inflation pressure on sinkage. density and volume of soil under the tire was relatively less than that of the dynamic load. Therefore, it was concluded that dynamic load was more important factor affecting soil compaction in comparison to the inflation pressure of tire. 3. The effect of three different factors on sinkage, density and volume of soil decreased as the soil depth increase. Consequently, it was fecund that soil compaction at a shallow depth in soil was larger than that at deep place in soil.

A Study on Soil Stress and Contact Pressure of Tire (타이어 접지압과 토양속 응력분포에 관한 연구)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.245-252
    • /
    • 2001
  • This study was carried out to investigate the effect of three factors(dynamic load, inflation pressure and multiple passes of the tire) on the contact pressure and the soil stresses under the tire. A series of soil bin experiment was conducted with a 6.00R14 radial-ply tire for sandy loam soil. Tire contact pressure at soil surface and soil stresses at 10cm and 20cm soil depth were measured for the three levels of dynamic load(1.17kN, 2.35kN and 3.53kN), for the three levels of tire inflation pressure(103.42kPa, 206.84kPa and 413.69kPa), and for five different number of passes(1, 2, 3, 4 and 5 pass). The following results were drawn from this study 1) As dynamic load, inflation pressure and number of passes of the tire increased, tire contact pressure at soil surface and soil stresses at 10cm and 20cm soil depth increased accordingly. Thus increased in dynamic load, inflation pressure and number of passes of the tire would increase soil compaction. 2) The effect of three different factors, or dynamic load, inflation pressure and number of passes of the tire, decreased as the soil depth increase. Consequently, it was found that the soil compaction at a shallow depth in soil is larger than that at deep place in soil. 3) The increase of dynamic load and number of passes increased soil stress exponentially, but the increase of inflation pressure increased soil stress linearly. The effect of tire inflation pressure on soil stress was relatively less than that of the dynamic load. Therefore, it was concluded that dynamic load is more important factor affecting soil compaction in comparison to the inflation pressure of tire.

  • PDF