• 제목/요약/키워드: Radial magnetic force

검색결과 104건 처리시간 0.039초

12/8과 6/4 스위치드 릴럭턴스 모터의 비교 : 노이즈 및 진동 (Comparison of 12/8 and 6/4 Switched Reluctance Motor : Noise and Vibration Aspects)

  • 최다운;이건;손동혁;조윤현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.850-851
    • /
    • 2008
  • This paper compares and investigates the vibration and noise characteristics through simulations of 12/8 and 6/4 switched reluctance motors (SRMs). The radial force which is the main source of vibration is computed from two-dimensional(2D) transient magnetic finite element analysis (FEA) and compared in both time and frequency domain. At the same output power, the radial force of 6/4 SRM is found to be more than two times as that one of 12/8 SRM. Three-dimensional structural finite-element analysis (3D FEA) is used to study the mechanical characteristics. It can be concluded from static structural analysis that the maximum total deformation could be reduced to 1/26 if the motor is designed with 12/8 structure instead of 6/4. The dominant vibration modes are verified by modal analysis.

  • PDF

IPMSM의 정토크 특성 향상 및 가진력 최소화를 위한 회전자 형상 최적화 (The Optimization of Rotor Shape for Constant Torque Improvement and Radial Magnetic Force Minimization)

  • 조규원;지승훈;박경원;장기봉;김규탁
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.64-69
    • /
    • 2012
  • In this paper, the optimal design of notch and barrier was carried out in order to improve characteristics of constant torque with minimizing the cogging torque occurred by teeth and slot structure. Optimized design was carried out by design of experiment and various characteristics including torque were studied by finite element method(FEM). In addition, in order to verify resonance frequency, natural frequency of the stator was analyzed by modal analysis.

3petal spiral type vacuum interrupter에서 가동접점전극과 고정접점전극간의 마주보는 각도의 변화가 아크구동력에 미치는 영향 (Influence of twisting angle between fixed contact and movable contact on arc driving force in 3petal spiral type vacuum interrupter)

  • 김병철;윤재훈;이승수;강성화;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.480-480
    • /
    • 2008
  • Vacuum circuit breaker(VCB) is now emerging as an alternative of gas circuit breaker(GCB) which uses SF6 gas as insulating material whose dielectric strength is outstanding. But we have to reduce SF6 gas because SF6 gas is one of greenhouse gas and efforts to reduce greenhouse gas are now trend of the world. Therefore, we can say VCB is the optimal alternative of GCB because vacuum is environmentally friendly. The vacuum interrupter is the core part of VCB to interrupt arcing current. There are mainly two methods to extinguish arc. One is radial magnetic field (RMF) method and the other is axial magnetic field (AMF) method. We deals with RMF method in this paper. Compared with AMP, RMF arc quenching method has different principle to extinguish arc. In case of RMF method, pinch effect is much larger than AMF method. Because of pinch effect RMF type contact electrodes have the single large spot which is severly damaged and melted while AMF type contact electrodes have small and multiple spots which are slightly damaged and melted. To prevent contact electrode being damaged and melted from high temperature-arc, RMF method uses Lorentz force to move arc. In this paper we calculated and compared the arc driving force of two cases and we analyzed the force acting on each part of arc by means of commercial finite element method software Maxwell 3D. They have 3petals and we considered two cases. One is the case when fixed(upper) and movable(lower) contacts are in mirror arrangement (Case 1). The other is the case when one of two contacts (movable contact) is revolved at maximum angle as possible as it can be (Case 2). And at each case above, we analyzed arc driving force at two positions, position 1 is the closest to the center of contact and position 2 is near the edge of petal on fixed contact. As a result we could find that Case 2 generated stronger arc driving force than Case 1 at position 1. But at position 2 Case 1 generated stronger arc driving force than Case 2. This simulation method can contribute to optimizing spiral-type electrode designs in a view of arc driving force.

  • PDF

하이브리드 AMB를 포함한 초전도 플라이휠 에너지 저장장치의 실험평가 (Experimental Evaluation of Superconductor Flywheel Energy Storage System with Hybrid Type Active Magnetic Bearing)

  • 이정필;김한근;한상철
    • Progress in Superconductivity
    • /
    • 제13권3호
    • /
    • pp.195-202
    • /
    • 2012
  • In this paper, we designed Active Magnetic Bearing (AMB) for large scale Superconductor Flywheel Energy Storage System (SFESS) and PD controller for AMB. And we experimentally evaluated SFESS including hybrid type AMB. The radial AMB was designed to provide force slew rate that was sufficient for the unbalance disturbances at the maximum operating speed. The thrust AMB is a hybrid type where a permanent magnet carries the weight of the flywheel and an electromagnetic actuator generates the dynamic control force. We evaluated the design performance of the manufactured AMB through comparison of FEM analysis and the results of experimental force measurement. In order to obtain gains of PD controller and design a notch filter, the system identification was performed through measuring frequency response including dynamics for the AMBs, a power amp and a sensor using a sine swept test method after levitating the flywheel. Through measuring the current input of the AMBs and the orbit of a flywheel according to rotational speed, we verified excellent control performance of the AMBs with small amount current for the large scale SFESS.

래디알 동전기 휠의 다축력 특성 (Multi-axial Force Characteristics of Radial Electrodynamic Wheel)

  • 정광석
    • 융복합기술연구소 논문집
    • /
    • 제7권2호
    • /
    • pp.1-5
    • /
    • 2017
  • The rotating electrodynamic wheel over a conductive plate produces thrust force as well as normal force. Specially, separating the conductive plate and spacing apart each part, the lateral stability of the rotating wheel is guaranteed due to the restoring force into neutral position. In this paper, the force characteristics of the electrodynamic wheel rotating over the conductive plate is analyzed using the finite element tool. First, the dominant parameters are identified considering the geometric configuration and the operating condition. And the sensitivity for the parameter deviation is quantified for the high force density. The above topology can be applied as an actuating principle for inter-city train as well as contact-free transfer device.

대용량 유도전동기의 부하 운전 시 자기 소음 특성 해석 (Analysis of the Magnetic Noise for Large Power Induction Motors at Loading Operation)

  • 권병훈;전태원;이홍희;김흥근
    • 전기학회논문지
    • /
    • 제58권3호
    • /
    • pp.509-515
    • /
    • 2009
  • When a squirrel cage induction motor is loaded, the magnetic noise can increase depending on the load current. It is due to the variation of air gap harmonic fluxes from the rotor current induced by loading. This unfavorable noise can be anticipated by analysing the radial force waves in the air gap, the mode shapes of them, and stator core natural frequencies at each mode. With the experimental tests with the different rotor slot numbers, the variation of magnetic noise depending on the load current is studied and the method to reduce the magnetic noise is suggested with the newly developed magnetic noise analysis program.

이중 동전기 휠에 의해 반송되는 도전성 환봉의 공간 안정성 (A Spatial Stability of the Conductive Rod Conveyed by Double Electrodynamic Wheels)

  • 정광석
    • 한국정밀공학회지
    • /
    • 제29권8호
    • /
    • pp.873-878
    • /
    • 2012
  • Putting a conductive rod between rotating axial electrodynamic wheels composed of repetitive permanent magnets, three-axial magnetic forces generate on the conductive rod. It is possible to levitate and transfer the rod on space with the forces. However, the forces vary in direction and magnitude for a position of the rod between the electrodynamic wheels. Thus, the position influences the stability of the rod also. To guarantee the stability of a levitated object, the force acting on the object should have negative stiffness like a spring. So, we analyze the stable operating range of the conductive rod levitated by the axial wheels with the commercial finite element tool in this paper. Specially, as the pole number and the radial width of permanent magnets has much influence on the generated force and thereby the stable region, their sensitivities are analyzed also. The analytic result is compared with experimental result.

Dual-Halbach Array Permanent Magnet Tubular Generator for Free-Piston Generator

  • Beigi, Hassan Moradi Cheshmeh;Akbari, Sohrab
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.405-412
    • /
    • 2015
  • In this study, we describe the effects of changing the magnet shape of permanent magnets (PMs) in a rotor Halbach-array PM generator for reciprocating free piston generator applications. More specifically, the rectangular-shaped magnets were replaced by the trapezoidal-shaped magnets. The initial design, an analytical magnetic field solution of rectangular shaped magnets, is presented and air-gap magnetic flux density and thrust force were estimated. The results were compared to the finite element analysis (FEA) showing excellent agreement. Using FEA, the effect of the shape of the magnets on the flux density and thrust force waveforms is analyzed. Moreover, the proportion of the Halbach array in the machine was optimized by the means of a parametric search. The results obtained from the analytical calculations and FEA were validated by comparing to those of Radial-array PM generator.

Dynamic Analysis of Rotor Eccentricity in Switched Reluctance Motor with Parallel Winding

  • Li, Jian;Choi, Da-Woon;Cho, Yun-Hyun
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 추계학술대회 논문집
    • /
    • pp.85-87
    • /
    • 2008
  • This paper presents dynamic characteristics in Switched Reluctance Motor (SRM) with rotor eccentricity and proposes the reduction method of rotor eccentricity effects by the different winding connections. These characteristics investigations are computed by 2D transient magnetic FEM analysis coupled with external circuits. The radial and unbalance magnetic force in the stator, which is the main exciting force of the vibration, is calculated using Maxwell stress method and compared with the performance characteristics according to the serial and parallel connections of windings. The influence of winding method counteracting unbalance forces on the rotor vibration behavior is estimated by the current waveforms of the paralleled paths under rotor eccentricity.

  • PDF

자기베어링으로 지지되는 수직형 강성 로터의 가상적 영 전류 제어 방식에 관한 연구 (A Study of Vertical Type Rigid Rotor Supported in Magnetic Bearings using Virtually Zero Power Control)

  • 이준호;이기서
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권7호
    • /
    • pp.393-400
    • /
    • 2003
  • In this paper we deal with the virtually zero power control for the rigid rotor with radial suspension by the permanent magnetic bearing and axial suspension by electromagnetic bearing. The purpose of the virtually zero power control is to reduce the power consumption of the electromagnetic bearings. The axial active force is expressed by the normal second order equation which has only one degree-of-freedom. The virtually zero power control structure has two schemes. One is the coil control current integrator which is used to make the convergence of the control current to a range which is very close to zero. By using the current integrator the DC component which is included in the control current is eliminated, thus the control current converges to a range which is close to zero. The other is normal PD control loop which is used to make the rotor reach to stable equilibrium point and to maintain air gap so that the axial force produced by radial permanent magnet always balances the total weight of the rotor and its load. First we show a simple mathematical plant model and the virtually zero power (VZP) control blocks. Second, we investigate the theoretical feasibility and the stability of the proposed virtually zero Power control levitation system with PD feedback loop by using linear control theory Finally we show the effectiveness of the proposed control method to reduce the power consumption by simulations.