• Title/Summary/Keyword: Radial gas distribution

Search Result 73, Processing Time 0.03 seconds

Combustion Test and Performance Analysis of Fuel Rich Gas Generator (농후 연소 가스발생기의 연소실험과 성능해석)

  • Kwon, Sun-Tak;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.92-97
    • /
    • 2005
  • A series of combustion test was done to verify the optimization result of a gas generator for a 10 ton thrust liquid rocket engine. An injector element is F-O-F impinging type injector and the test was conducted with kerosene/LOX propellants. Test results of combustion temperature and pressure show a very good agreement with optimal design result and verify that the design method was properly established. And turbulence ring revealed its effectiveness in enhancing combustion gas mixing and temperature difference in the radial direction showed only less than 15K. Also turbulence ring induced only 3.2% pressure loss in the combustion chamber, which is far less than conventional level observed in a gas turbine engine. Axial temperature distribution also shows that turbulence ring could effectively reduce about 10% or more in gas generator length if its location is properly selected.

Effect of Condensation on Spray Characteristics of Simplex Swirl Nozzle (응축이 심플렉스 와류 노즐의 분무 특성에 미치는 영향)

  • Koh, Kwang-Uoong;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.107-112
    • /
    • 2001
  • The effect of ambient gas (steam) condensation on swirl spray characteristics were studied experimentally for low subcooling condition of the liquid. The configuration of the liquid(water) sheet and the breakup modes were examined. Also variation of the discharge coefficient, breakup length, local and the cross-sectional area-averaged SMD of droplets with the liquid flow(injection) rate were obtained. The perforation breakup mode appears dominant with condensation while the aerodynamic wave breakup mode is dominant without condensation(in the air environment). The discharge coefficient, breakup length and the mean drop sizes decrease in a same manner with increasing of the liquid flow rate for both cases(with and without condensation). The condensation effects are insignificant with the discharge coefficient. However, the local and cross-sectional area-averaged SMD are larger and the breakup length becomes shorter in the steam environment. The spray angle predicted from the volumetric flux distribution along the radial direction of the sprays in the steam environment becomes larger with condensation.

  • PDF

Characteristics of Electron Beam Extraction in Large Area Electron Beam Generator

  • Woo, Sung-Hun;Lee, Hong-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.1
    • /
    • pp.10-14
    • /
    • 2004
  • A large area electron beam generator has been developed for industrial applications, for example, waste water cleaning, flue gas treatment, and food pasteurization. The operational principle is based on the emission of secondary electrons from the cathode when ions in the plasma contact the cathode, which are accelerated toward the exit window by the gradient of the electric potential. Conventional electron beam generators require an electron beam scanning mechanism because a small area thermal electron emitter is used. The electron beam of the large area electron beam generator does not need to be scanned over target material because the beam area is considerable. We have fabricated a large area electron beam generator with peak energy of 200keV, and a beam diameter of 200mm. The electron beam current has been investigated as a function of accelerating voltage and distance from the extracting window while its radial distribution in front of the extracting window has been also measured.

Analysis of Natural Convection around Radial Heat Sink (원형 히트싱크의 자연대류 해석)

  • Yu, Seung-Hwan;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1172-1176
    • /
    • 2009
  • In the present study, natural convection over a heat sink with a horizontal circular base and rectangular fins was numerically analyzed. To calculate natural convection heat transfer, the assumptions of ideal gas and laminar flow were made for air. Flow patterns around the heat sink were chimney-like. The resultant temperature distribution on the circular base appeared almost uniform. Parametric studies were performed to compare the effects of fin length, fin height, the ideal number of fins, and heat flux on the average temperature of a heat sink and the average heat transfer coefficient from the heat sink array. Correlation to predict the average Nusselt number was presented.

  • PDF

An Experimental Study on Structure of Twin-Fluid Spray with Air Entrainment (공기 유입을 고려한 2유체 분무의 구조에 관한 실험적 연구)

  • Chae, Hyo-Cheol;Kim, Dong-Il;Oh, Sang-Heun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.925-930
    • /
    • 2000
  • This paper is investigated the entrainment of air into sprays which has significant effects on the combustion efficiency, stability of flame using the air-assisted twin-fluid nozzle in non-burning. The factors which may be expected to affect the entrainment of air by a liquid spray are: Relative velocity of droplet and ambient gas; Drop size and size distribution; Density and other property of the liquid. Here, axial, radial velocity and turbulent kinetic energy of spray droplet was measured with the PIV(Particle Image Velocimetry). Spray characteristics were also visualized using CCD camera. The results indicate that the entrainment rate increases more or less non-linearly with the downstream region.

  • PDF

A Numerical Model for Predicting the Radial Power Profile in CANDU-PHWR Fuel Pellet (CANDU-PHWR 핵연료 소결체의 반경방향 출력분포 수치모형)

  • Woan Hwang;Suk, Ho-Chun;Jae, Won-Mok
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.444-455
    • /
    • 1991
  • An accurate and fast running NEDAR model for calculating radial power profile throughout fuel life in both solid and annular pellets for existing and advanced CANDU-PHWR-fuel was developed in this work. This model contains resultant flux depression equations and neutron depression data tables which have been developed for CANDU-PHWR fuel of pellet with the diameter 8.0 to 19.5 mm and enrichment 0.71-6.0 wt % U-235, over a bumup range of 0 to 840 MWh /kgU (35000 MWD/T). In order to obtain the neutron flux distribution in the fuel pellet, the CE-HAMMER physics code was run for a neutron flux spectrum appropriate to a CANDU-PHWR to give predictions of radial power profile for several ranges of fuel design parameters. The results, which were calculated by the CE-HAMMER physics code, were fitted to an equation which is solved in terms of Bessel and exponential functions in order to obtain the parameters, $textsc{k}$, $\beta$ and λ in the resultant equation. The present NEDAR model produce a radial profile which, when normalized to unity at the pellet surface, is slightly higher than the profile of the original ELESIM data table. The predictions of the fission gas release by KAFEPA-NEDAR are in slightly better agreement with the experiments than those of ELESIM. The NEDAR model described in this study has been shown to provide an effective, reliable, and accurate method for determining radial power profiles in CANDU-PHWR fuel rods without incurring a significant increase in computing time.

  • PDF

A Study on Flow Characteristics with the Installed Location Change of Mechanical Deflector (기계적 편향판 설치위치의 변화에 따른 유동특성에 대한 연구)

  • Kim, Kyoung-Ryun;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.49-53
    • /
    • 2015
  • Thrust vector control is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. TVC of the tapered ramp tabs has the potential to produce both large axial thrust and high lateral force. We have conducted the experimental research and flow analysis of ramp tabs to show the performance and the structural integrity of the TVC. The experiments are carried out with the supersonic cold flow system and the schlieren graph. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

Characteristics of spatial distribution of cold cathode type large aperture electron beam (냉음극형 대면적 전자빔의 공간적 분포 특성)

  • Woo, S.H.;Abroyan, M.;Cho, C.H.;Kim, G.H.;Lee, H.S.;Rim, G.H.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2170-2172
    • /
    • 1999
  • A low energy large aperture(LELA) pulsed electron beam generator of a cold cathode type has been developed for environmental applications, for example, waste water cleaning, flue gas cleaning, and pasteurization etc. The operational principle is based on the emission of secondary electrons from cold cathode when ions in the plasma hit the cathode, which are accelerated toward exit window by the gradient of an electric potential. We have fabricated the LELA electron beam generator with the peak energy of 200keV and beam diameter of 200mm and obtained the large aperture electron beam in air. The electron beam current density has been investigated as a function of glow discharge current, accelerating voltage and radial distribution in front of the exit window foil. The plasma density and electron temperature have been measured in order to confirm the relation with the electron beam current density. We are going to upgrade the LELA electron beam generator in the electron energy, electron beam current and stability of operation for various applications.

  • PDF

Combustion Analysis with CARS Temperature Measurement in a Gas Turbine Combustor (가스터빈 연소기내 CARS 온도측정을 통한 연소해석)

  • Lee, Jong-Ho;Park, Chul-Woong;Han, Yeoung-Min;Ko, Young-Sung;Lee, Su-Yong;Yang, Soo-Seok;Lee, Dae-Sung;Jeon, Chung-Hwan;Chang, Young-June;Shin, Hyun-Dong;Hahn, Jae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1134-1141
    • /
    • 2003
  • Performance of a gas turbine combustor installed in a test facility has been studied by measuring spatially- and temporally-resolved temperature distributions using multiplex CARS technique. 500 CARS temperatures were determined at each measuring point to obtain a histogram of temperature distribution. Experiments were carried out in the aero-engine combustor sector rig burning standard kerosene fuel. The histograms were obtained around a triple-sector double annular rig running in ground idle conditions, showing features of flow mixing within the rig. The temperature histograms that prove the existence of high temperatures above 1900 K provide us valuable information to improve the design of the combustor structure suppressing NOx generation in turbulent combustion processes. The effects of swirl direction and pre-filmer on gas turbine combustion were investigated. When we installed radial swirls, a large recirculation zone was formed by the fuel module regardless of swirl directions and the pre-filmer installation. It is found that the swirl direction affects the shape of the reverse flow zone, however. Also, an attempt to estimate the flow field and flame structure is made using the histogram of temperature determined with the CARS technique.

Looking for Direct Evidence of Triggered Star Formation: Gas Kinematics

  • Lim, Beomdu;Sung, Hwankyung;Lee, Jae Joon;Oh, Heeyoung;Kim, Hwihyun;Hwang, Narae;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.54.1-54.1
    • /
    • 2016
  • Stellar wind and radiation pressure from massive stars can trigger the formation of new generation of stars. The sequential age distribution of stars, the morphology of cometary globules, and bright-rimmed clouds have been accepted as evidence of triggered star formation. However, these characteristics do not necessarily suggest that new generation of stars are formed by the feedback of massive stars. In order to search for any physical connection between star forming events, we have initiated a study of gas and stellar kinematics in NGC 1893, where two prominent cometary nebulae are facing toward O-type stars. The spectra of gas and stars in optical and near-infrared (NIR) wavelength are obtained with Hectochelle on the 6.5m MMT and Immersion GRating INfrared Spectrograph on the 2.7m Harlan J. Smith Telescope at McDonald observatory. In this study, the radial velocity field of gas across the cluster is investigated using $H{\alpha}$ and [N II] ${\lambda}$ 6584 emission lines, and that of the cometary nebula Sim 130 is also probed using 1-0 S(1) transition line of $H_2$. We report a distinctive velocity field of the cometary nebulae and many ro-vibrational transitions of $H_2$ even at high energy levels in the NIR spectra. These properties indicate the interaction between the cometary nebulae and O-type stars, and this fact can be a clue to triggered star formation in NGC 1893.

  • PDF