• 제목/요약/키워드: Radial force

검색결과 442건 처리시간 0.021초

자기 포커싱 방법을 적용한 감속 장치의 자기력 특성에 관한 연구 (Magnetic force Characteristics of the Speed Reducer using Magnetic Focusing)

  • 정광석
    • 융복합기술연구소 논문집
    • /
    • 제11권1호
    • /
    • pp.7-12
    • /
    • 2021
  • The magnetic gear, which amplifies the torque by filtering the magnetic field generated by the low-speed permanent magnet with a modulator, can exclude gear contact and can be effectively applied when there are environmental restrictions. In this paper, we discuss the magnetic force characteristics of a magnetic gear using a magnetic focusing array that replaces a general permanent magnet array magnetized in a radial direction along the circumferential direction. The torque increasing effect of the discussed array, known as an arrangement that increases the principal component by focusing a radial magnetic field, is compared with that of a general magnetic gear. In particular, in a magnetic gear using such an array, the sensitivity of torque according to variables is analyzed to see how various variables known as factors affecting torque have an effect.

V벨트에서 상당마찰계수 계산 (Calculation of equivalent friction coefficients in V-belt)

  • 홍장표
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.740-745
    • /
    • 2001
  • There are two kinds of method to calculate the equivalent friction coefficients at V groove. One is to consider the firction in radial direction. The other is to neglect the friection in radial direction. The values calculated from the two methods is different of which ratio is in the range from two times to five times. So it is necessary to study which is correct in the view of force equilibrium and machine design.

  • PDF

엔드밀링에서 절삭력 방향변동에 관한 고찰 (Study on the Change of Cutting Force Direction in Endmilling)

  • 송태성;김희술;이지형;고태조
    • 한국정밀공학회지
    • /
    • 제24권10호
    • /
    • pp.37-45
    • /
    • 2007
  • End-milling is intermittent cutting process performed by a tool with a number of teeth. Its cutting forces are commonly measured by the tool dynamometer which has rectangular coordinates. In this case, the pattern of cutting forces is different according to cutting conditions. At a certain cutting condition, the sign of cutting force changes from positive to negative during a revolution of one tooth. The change of force direction excites a cutting tool and severe vibration arises when radial depth of cut increases. In this study, cutting experiments and simulations were carried out in order to explain the cause of the change of the cutting force direction. In addition, the effect of the cutting force change was discussed in terms of chatter vibration in end milling.

SCM440 경화 처리강의 선삭저항에 관한 연구 (A Study on the Turning of SCM440 Hardened Steel)

  • 정기영
    • 한국생산제조학회지
    • /
    • 제8권5호
    • /
    • pp.102-107
    • /
    • 1999
  • In this paper hardened SCM440 material and annealed SCM440 material are for cutting experiments by the cutting con-dition which is chosen respectively by tool three components of cutting force are recorded using multicorder, Then the surface roughness for various force are measured by Roughness Tester. The results of the experiment are summarized as follow. The hardened material cut by ceramic tool(BX20) gives the highest radial component values among the cutting resistance radial components is increased higher for the higher cutting speed even though vertical component and axial component tend to decrease. But when the annealed material was cut increase in cutting speed results in the increase of three component forces. Since ceramic insert tip used the experiment hardly affect Built-up Edge and heat the cutting resistance decrease slightly regardless of the increased of cutting speed. The hardened material has higher three compo-nent force value than the annealed material because the material of high hardness is increased cutting resistance. The low-est cutting forces for hardened material and annealed material are shown in the cutting speed of 60m/min and 180m/min. respectively.

  • PDF

램프형 포인트하중에 의한 반무한 탄성체의 응력파해석 (An Analysis of Stress Waves in an Elastic Half Space to a Normal Point Force of Ramp Type in Time)

  • 김현실;김재승;강현주;김상렬
    • 대한기계학회논문집A
    • /
    • 제21권4호
    • /
    • pp.673-678
    • /
    • 1997
  • Stress wave propagations in an elastic half space to a normal point force of ramp type in time are analyzed. The governing equations are transformed by applying the Laplace and Hankel transforms with respect to time and radial distance. The inversion of Laplace transforms are performed by employing the Cagniard-de Hoop method, where the Rayleigh waves at surface are obtained by including the residue terms. The stress waves computed at the location very cose to the surface are shown to be almost identical to the surface waves obtained by the residue method except the Rayleigh wavefront. It is found that at the surface, the stresses are dominated by the Rayleigh waves, whose amplitudes increase linearly with time when time is very large. It is also found that in the interior part, the radial stress has a logarithmic singularity at the shear wavefront, while tangential stress shows no singularity.

주축 변위 센서를 이용한 절삭력 측정에 관한 연구 (A Study on Cutting Force Measurement Using a Cylindrical Capacitive Spindle Sensor)

  • 김일해;장동영;한동철
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.17-23
    • /
    • 2002
  • A cylindrical capacitance-type spindle displacement sensor was developed and its effectiveness as a system to monitor cutting forces during hard turning was tested in this research. The sensor was installed between the face of spindle cover and the chucking element and measured pure radial motion of the spindle under the condition with presence of roundness error at measured surface. To prove the effectiveness of the developed system hard aiming tests using ceramic inserts and tool steel as workpiece were conducted. The workpiece was hardened up to 65 Rc. The variations of pure radial motion of the spindle ware measured during the cutting tests. The signals from the sensor showed the same pattern of cutting force variations from the tool dynamometer due to the progress of tool wear. As the flank wear of the ceramic tool increased both static component of cutting forces and the amount of center shift of spindle orbit increased, Results from the research showed that the developed sensor could be utilized as an effective and cheap on-line sensing device to monitor cutting conditions and tool performance in the un-manned machining center.

비절삭 저항상수에 따른 절삭력 예측 (Cutting Force Estimation Considering the Specific Cutting Force Constant)

  • 김종도;윤문철
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.75-82
    • /
    • 2019
  • Few studies have been conducted regarding theoretical turning force modelling while considering cutting constant. In this paper, a new cutting force modelling technique was suggested which considers the specific cutting force coefficients for turning. The specific cutting force is the multiplication of the cutting force coefficient and uncut chip thickness. This parameter was used for experimental modelling and prediction of theoretical cutting force. These coefficients, which can be obtained by fitting measured average forces in several conditions, were used for the formulation of three theoretical cutting forces for turning. The cutting force mechanism was verified in this research and its results were compared with each of the experimental and theoretical forces. The deviation of force was incurred by a small amount in this model and the predicted force considering feed rate, nose radius, and radial depth shows a physical behavior in main force, normal force, and feeding force, respectively. Therefore, this modelling technique can be used to effectively predict three turning forces with different tool geometries considering cutting force coefficients.

나선홈을 갖는 반구형 공기 베어링의 반경 방향 성능 측정 (Radial Performances of Spiral-Grooved Spherical Air Bearings)

  • 박근형;최정환;최우천;김권희;우기명;김승곤
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.23-30
    • /
    • 1999
  • This paper investigates the radial performance of self-acting spiral-grooved air bearing, used to support small high-speed rotating bodies. Repeatable runout, nonrepeatable runout, stiffness and supporting load are selected as the performance. The clearance between rotor and stator, the stator groove depth, and the rotating speed are chosen as three main parameters affecting the performances. Force application and displacement measurement are done in a noncontact manner, in order not to disturb operation: electromagnetic force is applied to the rotor and gap sensors are used to measure the displacement of the rotor. Experimental results show that repeatable runout decreases as speed, groove depth and clearance decrease. Nonrepeatable runout decreases as clearance decreases, and it has a minimum value at $5.5{\mu}m$ of grove depth and a maximum value at speed of 18.000rpm. Stiffness increases as speed increases and clearance decreases, and has a maximum value around $5.5{\mu}m$ of groove depth. The relationship between force and displacement is linear for small displacement, but becomes nonlinear for large displacement. Supporting load is linearly proportional to the stiffness, and it is a maximum value around $4.75{\mu}m$ of clearance.

  • PDF

비절삭저항 상수 변화에 따른 절삭력 분석 (An analysis of cutting force according to specific force coefficients)

  • 김종도;윤문철
    • 한국기계가공학회지
    • /
    • 제13권2호
    • /
    • pp.108-116
    • /
    • 2014
  • Considering the run-out effect and cutting force coefficients, the cutting force profile of half immersion end-milling was analyzed in detail. The effects of three specific cutting-force coefficients and three edge-force coefficients are verified. Through a detailed investigation, it is proved that the radial cutting force coefficients and are the major factors which increase the cutting forces Fx and Fy in end-milling. However, the axial cutting force coefficients have no influence on the force Fx and Fy changes in end-milling. Also, the analyzed end-milling force model shows good consistency with the actual measured force with regard to Fx and Fy. Thus, this model can be used for the prediction of the force history in end-milling with run-out, and it incurs a different force history with different start and exit immersion angles as well as holding effects.

이삭 밸 때 벼의 리올러지 특성(特性)에 관한 연구(硏究) (Studies on Rheological Properties of Rice Plants at the Booting Stage)

  • 허윤근;이상우
    • Journal of Biosystems Engineering
    • /
    • 제16권1호
    • /
    • pp.37-48
    • /
    • 1991
  • Rice plants are subjected to various forces such as natural force of wind and mechanical force of cultivating machines. Rheological behavior of the rice stem can be expressed in terms of three variables : stress, relaxation and time. The objectives of this study are to examine stress relaxation, creep and recovery characteristics on the rice stem in case of axial and radial loading. Stress relaxation with time was studied on three levels of loading rate and on four levels of applied stress. The results were summarized as follows : 1. The hysterisis losses of the rice stem distinctly observed at the radial compression in comparison with axial compression. The hysterisis loss implied that the stem to absorbed energy without being deformed beyond the yield point. 2. Ageneralized Maxwell model consisting of three elements gave a good description of the relaxation behavior of the rice stem. Rate of loading was more significant on the observed relaxation behavior within the short relaxation time, but there were little influences of rate of loading on the relaxation time. 3. The stress relaxation intensity and the residual stress increased in magnitude as the applied stress increased, but the relaxation time was little affected by the applied stress. 4. The coefficients of the stress relaxation model showed much differences in the radial compression and the axial compression, especially the higher relaxation stress of the third element was observed in the radial compression. 5. The behaviors of rice stem in creep and recovery test also might be represented by a four element Burger's model. But the coefficients of the creep model were different from those of the recovery model. 6. The steady-state phenomena of creep appeared at the stress larger than 20 MPa in Samkang and 1.8 MPa in Whajin. 7. The elastic modulus of the stem showed the range from 40 to 60 MPa. It could be considered, as a result, the rice stems had viscoelastic properties.

  • PDF