• Title/Summary/Keyword: Radial error

Search Result 274, Processing Time 0.026 seconds

Performance of Multiuser Detector Based on Radial Basis Function for DS-CDMA Power Line Communication Systems (DS-CDMA 기반 전력선 통신 시스템을 위한 방사형 기저 함수를 이용하는 다중 사용자 검출기의 성능)

  • Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • In this paper, multiuser detector (MUD) based on radial basis function (RBF) is proposed and simulated for a multicode direct sequence/code division multiple access (DS/CDMA) system in a multipath fading channel. The performance of RBF-based MUD is compared with that of many suboptimal multiuser detectors in terms of bit error probability. From the simulation results, it is confirmed that the RBF-based MUD outperforms decorrelating detector, and achieves near-optimum performance under various environments. The results in this paper can be applied to design of MUD for a multicode DS/CDMA system.

Dual Reciprocity Boundary Element Analysis for the Graetz Problem in Circular Duct (원형 덕트유동에서의 Graetz 문제에 대한 이중교환 경계요소 해석)

  • Choi, Chang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.243-253
    • /
    • 1999
  • The dual reciprocity boundary element method (DRBEM) is used to solve the Graetz problem of laminar flow inside circular duct. In this method the domain integral tenn of boundary integral equation resulting from source term of governing equation is transformed into equivalent boundary-only integrals by using the radial basis interpolation function, and therefore complicate domain discretization procedure Is completely removed. Velocity profile is obtained by solving the momentum equation first and then, using this velocities as Input data, energy equation Is solved to get the temperature profile by advancing from duct entrance through the axial direction marching scheme. DRBEM solution is tested for the uniform temperature and heat flux boundary condition cases. Local Nusselt number, mixed mean temperature and temperature profile inside duct at each dimensionless axial location are obtained and compared with exact solutions for the accuracy test Solutions arc in good agreement at the entry region as well as fully developed region of circular duct, and their accuracy are verified from error analysis.

Radial Electrical Impedance: A Potential Indicator for Noninvasive Cuffless Blood Pressure Measurement

  • Huynh, Toan Huu;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.239-244
    • /
    • 2017
  • Noninvasive, cuffless, and continuous blood pressure (BP) monitoring is essential to prevent and control hypertension. A well-known existing method for this measurement is pulse transit time (PTT), which has been investigated by many researchers as a promising approach. However, the fundamental principle of the PTT method is based on the time interval taken by a pulse wave to propagate between the proximal and distal arterial sites. Consequently, this method needs an independent system with two devices placed at two different sites, which is a problem. Even though some studies attempted to synchronize the system, it is bulky and inconvenient by contemporary standards. To find a more sensitive method to be used in a BP measurement device, this study used radial electrical bioimpedance (REB) as a potential indicator for BP determination. Only one impedance plethysmography channel at the wrist is performed for demonstrating a ubiquitous BP wearable device. The experiment was evaluated on eight healthy subjects with the ambulatory BP monitor on the upper arm as a reference. The results demonstrated the potential of the proposed method by the correlation of estimated systolic (SBP) and diastolic (DBP) BP against the reference at $0.84{\pm}0.05$ and $0.83{\pm}0.05$, respectively. REB also tracked the DBP well with a root-mean-squared-error of $7.5{\pm}1.35mmHg$.

Implementation of Elbow Method to improve the Gases Classification Performance based on the RBFN-NSG Algorithm

  • Jeon, Jin-Young;Choi, Jang-Sik;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.431-434
    • /
    • 2016
  • Currently, the radial basis function network (RBFN) and various other neural networks are employed to classify gases using chemical sensors arrays, and their performance is steadily improving. In particular, the identification performance of the RBFN algorithm is being improved by optimizing parameters such as the center, width, and weight, and improved algorithms such as the radial basis function network-stochastic gradient (RBFN-SG) and radial basis function network-normalized stochastic gradient (RBFN-NSG) have been announced. In this study, we optimized the number of centers, which is one of the parameters of the RBFN-NSG algorithm, and observed the change in the identification performance. For the experiment, repeated measurement data of 8 samples were used, and the elbow method was applied to determine the optimal number of centers for each sample of input data. The experiment was carried out in two cases(the only one center per sample and the optimal number of centers obtained by elbow method), and the experimental results were compared using the mean square error (MSE). From the results of the experiments, we observed that the case having an optimal number of centers, obtained using the elbow method, showed a better identification performance than that without any optimization.

Design of 2-axis compensation servo system for angle multiplexing Holographic Data Storage (각 다중화 방식의 홀로그래픽 정보저장기기의 양방향틸트 보상시스템 설계)

  • Lim, Sung-Yong;Kim, Nak-Yeong;Han, Cho-Lok;Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • Holographic Data Storage System, one of the next generation data storage devices, is a 2-dimensional page oriented memory system using volume holograms in writing and retrieving process. Recently photopolymer with disc type substrate was selected as a media for the Holographic Data Storage System. The disc tilt occurs when the media rotates and the external disturbance applies. The disc tilt causes the change of the angle between the reference beam and the media, the data cannot be retrieved with the right angle or other data page is retrieved. The tilt is generated in a 2-axis direction (tangential, radial). The tangential tilt direction is the same with the multiplexing plane, while the radial tilt direction is a perpendicular to the multiplexing plane. In this research we propose 2-axis tilt angle servo system. The tilt errors are measured by using external photo detector and the additional red laser. Then the tangential direction tilt is compensated by using the galvano mirror. Also the radial direction tilt is compensated by the rotating prism between the relay lens in the reference field. Finally we confirm the compensation results through the Signal to Noise Ratio(SNR) and Bit Error Rate(BER).

Underwater object radial velocity estimation method using two different band hyperbolic frequency modulation pulses with opposite sweep directions and its performance analysis (두 대역 상반된 스윕방향 hyperbolic frequency modulation 펄스로 수중물체 시선속도추정 기법 및 성능분석)

  • Chomgun Cho;Euicheol Jeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.25-31
    • /
    • 2023
  • In order to estimate the radial speed of an underwater object so-called target with active sonar, Continuous Wave (CW) pulse is generally used, but if a target is slow and at near distance, it is not easy to estimate the radial velocity of the target due to acoustic reverberation in the ocean. In 2017, Wang et al. utilized broadband signal of two Hyperbolic Frequency Modulation (HFM) pulses, which is known as a doppler-invariant pulse, with equal frequency band and in opposite sweep directions to overcome this problem and successfully estimate the radial speed of slow-moving nearby target. They demonstrated the estimation of the radial velocity with computer simulation using the parameters of two HFM starting time differences and receiving times. However, for it uses two HFM pulses with equal frequency, cross-correlation between the two pulses negatively affect the detection performance. To mitigate this cross-correlation effect, we suggest using two different band HFM with the opposite sweep directions. In this paper, a method of radial velocity estimation is derived and simulated using two HFM pulses with the pulse length of 1 second and bandwidth of 400 Hz. Applying the suggested method, the radial velocity was estimated with approximately 6 % of relative error in the simulation.

Performance Analysis of GPS and QZSS Orbit Determination using Pseudo Ranges and Precise Dynamic Model (의사거리 관측값과 정밀동역학모델을 이용한 GPS와 QZSS 궤도결정 성능 분석)

  • Beomsoo Kim;Jeongrae Kim;Sungchun Bu;Chulsoo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.404-411
    • /
    • 2022
  • The main function in operating the satellite navigation system is to accurately determine the orbit of the navigation satellite and transmit it as a navigation message. In this study, we developed software to determine the orbit of a navigation satellite by combining an extended Kalman filter and an accurate dynamic model. Global positioning system (GPS) and quasi-zenith satellite system (QZSS) orbit determination was performed using international gnss system (IGS) ground station observations and user range error (URE), a key performance indicator of the navigation system, was calculated by comparison with IGS precise ephemeris. When estimating the clock error mounted on the navigation satellite, the radial orbital error and the clock error have a high inverse correlation, which cancel each other out, and the standard deviations of the URE of GPS and QZSS are small namely 1.99 m and 3.47 m, respectively. Instead of estimating the clock error of the navigation satellite, the orbit was determined by replacing the clock error of the navigation message with a modeled value, and the regional correlation with URE and the effect of the ground station arrangement were analyzed.

The Experimental Study on the Effects of Hangbujapalmultang on Enhancing Learning and Memory in Rats with Radial Arm Maze (향부자팔물탕(香附子八物湯)이 흰쥐의 방사형 미로학습(迷路學習)과 기억(記億)에 미치는 영향(影響))

  • Ryu Jae-Myun;Kim Jong-Woo;Whang Wei-Wan;Kim Hyun-Taek;Lee Hong-Jae
    • Journal of Oriental Neuropsychiatry
    • /
    • v.9 no.2
    • /
    • pp.45-51
    • /
    • 1998
  • Purpose : This study has an experiment on finding how Hyangbujapamultang advanced the learning and memory of rat to find the method to improve the failure of memory which is the symptom of dementia.Method : In the experiment, rats were divided the control group (14 rat) which medicate the excipient into the sample group (17 rat) which medicates Hyangbujapalmutang. And the learning ability test and the memorv test was practiced to using the task of radial arm maze.The learning ability test had the presupposition that, when a rat which frequents 8 tracks makes am error not exceeding one time for 3 days without a break, it passes the test.First experiment compared total days when the control group passed the test with total days when the sample group it.The memory test practiced after 24 hours when the learning ability test was over. When a rat frequents 4 tracks, the gates is cut off during 30 seconds. Here the number of error at the control group with that of the sample group.Result: In the learning ability test, the sample group needed 5.82${\pm}$0.37 days to pass the test and the control group needed 6.43${\pm}$0.67 days. In the memory test, the sample group errored 0.29${\pm}$0.37 times and the control group errored 1.86${\pm}$0.78 times.Conclusion : In the learning ability test, the sample group passed the test earlier than the control group, but any statistical correlationship couldn't be found in it. In the memory test, the sample group had the pregnant reduction of the number of error in comparison with the control group.

  • PDF

Magnetic analysis of a finite solenoid (유한 솔레노이드의 자속밀도 해석)

  • Lee, Ju-Hee;Hwang, Seon;Lee, Dong-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6453-6457
    • /
    • 2015
  • In this paper, the theoretical analysis for a solenoid with a finite length was verified by the finite element simulation. The solenoids are widely being used in the field of mechanical, industrial, medical industry due to their simple structure and fast responses. Solenoid actuators use an electromagnetic force. A magnetic field is formed around the solenoid coil when a current is applied. The magnetic force generated by the magnetic field enables an inside plunger to move linearly. The axial and radial magnetic fields (magnetic flux density, B) at a certain point were calculated from the Biot-Savart's law and compared with the simulation analysis from the ANSYS-Magnetostatic S/W. Comparison result, an error exists in the error range, and could therefore verify the accuracy.

Clearance and preload effects on NRRO of miniaturc ball bearings with waviness

  • Kim, Y.C.;Choi, S.K.;Yoon, K.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.303-304
    • /
    • 2002
  • This paper presents theoretical analysis of the NRRO(the non-repeatable run-out) for a ball bearing with geometric imperfection. This imperfection contains ball size error, ball waviness, outer race waviness and inner race waviness. The 3D dynamic analysis of a ball bearing using the Newton-Raphson method is performed to calculate the displacement of shaft center. The radial and axial NRRO are simulated, and preload and clearance effects are investigated. Preload and clearance have significant effects on radial and axial NRRO of for miniature ball bearings.

  • PDF