• Title/Summary/Keyword: Radial Vane

Search Result 53, Processing Time 0.025 seconds

Performance characteristic investigation and stay vane effect on Ns100 inline francis turbine

  • Singh, Patrick Mark;Chen, Zhenmu;Hwang, Yeong-Cheol;Kang, Min-Gu;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.397-402
    • /
    • 2016
  • This study presents the performance characteristics of a small Francis turbine with an inline casing and is a continuation of a previous study. A new runner design has been implemented using the previous facility. The specific speed of the new runner has been modified from $N_s$ 80 to $N_s$ $100m-kW-min^{-1}$. This turbine can be installed in a city water supply system. To dissipate excess pressures in the water line system an inline-turbine can be used instead of an inline-pressure reducing valve. Thus, some of the energy can be recovered by utilizing the pressure difference. For best applicability and minimal space consumption, the turbine is designed with an inline casing instead of a common spiral casing. As a characteristic of inline casing, the flow accesses to the runner are in the radial direction, showing low efficiency. The installation of vanes improves the internal flow and positively affects the output power. In contrast to the previous study, the new runner reduces the effect of the stay vanes by maintaining a higher efficiency.

Effects of Casing Shape on the Performance of a Small-sized Centrifugal Compressor

  • Kim, D.W.;Kim, H.S.;Kim, Youn-J.
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.132-139
    • /
    • 2003
  • The effects of casing shapes on the performance and the interaction between an impeller and a casing in a small-sized centrifugal compressor are investigated. Especially, numerical analyses are conducted for the centrifugal compressor with both a circular casing and a volute one. The optimum design for each element (i.e., impeller, diffuser and casing) is important to develop an efficient and compact compressor using alternative refrigerant as working fluids. Typical rotating speed of the compressor is in the range of 40,000∼45,000 rpm. The impeller has backswept blades due to tip clearance and a vane diffuser has wedge type. In order to predict the flow pattern inside an entire impeller, vaneless diffuser and casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For computations of compressible turbulent flow fields, the continuity and time-averaged Navier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure recovery and loss coefficients are obtained for various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. The static pressure around the casing and pressure difference between the inlet and outlet of the compressor are measured for the circular casing.

Performance Evaluation of a Thrust Reverser Using an Euler Solver (비장착 나셀의 역추력기 형상에 대한 3차원 Euler 유동해석)

  • Kim Soo Mi;Yang Soo Seok;Lee Dae Sung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.167-173
    • /
    • 1999
  • An Euler-based CFD tool has been developed for the performance evaluation of a thrust reverser mounted on a high bypass ratio turbofan engine. The computational domain surrounded by the ground and non-reflection boundary includes the whole nacelle configuration with a deployed thrust reverser. The numerical algorithm is based on the modified Godunovs scheme to allow the second order accuracy in both space and time. The grid system is generated by using eleven multi-blocks, of which the total cell number is 148,400. The thrust reverser is modeled as if it locates at the nacelle simply in all circumferential direction. The existence of a fan and an OGV(Outlet Guide Vane) is simulated by adopting the actuator disk concept, in which predetermined radial distributions of stagnation pressure ratio and adiabatic efficiency coefficient are used for the rotor type disk, and stagnation pressure losses and flow outlet angles for the stator type disk. All boundary conditions including the fan and OGV simulation are treated by Riemann solver. The developed solver is applied to a turbofan engine with a bypass ratio of about 5.7 and the diameter of the fan cowl of 83 inch. The computational results show that the Euler-based inviscid method is very useful and economical to evaluate the performance of thrust reversers.

  • PDF

Evaluation of Turbulent Models on the Swirling Flow of a Gun-Type Gas Burner According to the Mesh Size (격자크기에 따른 Gun식 가스버너의 스월유동에 대한 난류모델평가)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2014
  • The computational fluid dynamics was carried out to evaluate turbulent models on the swirling flow of a gun-type gas burner(GTGB) according to the mesh size. The commercial SC/Tetra software was used for a steady-state, incompressible and three-dimensional numerical analysis. In consequence, the velocity magnitude from the exit of a GTGB and the flowrate predicted by the turbulent models of MP k-${\varepsilon}$, Realizable k-${\varepsilon}$ and RNG k-${\varepsilon}$ agree with the results measured by an experiment very well. Moreover, the turbulent kinetic energy predicted by the turbulent model of standard k-${\varepsilon}$ with mesh type C only agrees with the experimental result very well along the radial distance. On the other hand, the detailed prediction of the information of swirling flow field near the exit of a GTGB at least needs a CFD analysis using a fairly large-sized mesh such as a mesh type C.

A Study on the Flow Characteristics of Circular and Swirl Jets (원형 및 스월제트의 유동특성에 관한 연구)

  • Ko, Dong Guk;Yoon, Suck Ju
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.69-74
    • /
    • 2014
  • The comparison of the flow characteristics between circular and swirl jets which were controlled by the spinner attachment inside the airtube were conducted in this study. Swirl jet means a flow in whirls by mixing the flow of axial and tangential direction. Swirl flow has been used for the improvement of the combustion efficiency in the combustor. This flow is controlled by the spinner which has several vanes inclined by certain angles to the axial direction. In this study, angle of vane $30^{\circ}$ and diameter ratio of outlet to inlet of the airtube 0.73 were made. These spec. should find on the general gun type burner built in the domestic small size boiler. As the flow characteristics, axial and tangential velocities were measured by using the 2-D hot-wire velocimeter system and analyzed statistically. And also this research conducted a practical experiment considering to the attached belongings likes as ignitor, nozzle etc. on the airtube of the gun type burner. As a result, swirl occurred at the occasion of beingness and flow region extended considerably toward the radial direction. But effect of swirl did not transmit to the downstream. And the complicated flow was appeared regardless of the existence of spinner because of the effect of belongings.

Research on the structure design of the LBE reactor coolant pump in the lead base heap

  • Lu, Yonggang;Zhu, Rongsheng;Fu, Qiang;Wang, Xiuli;An, Ce;Chen, Jing
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.546-555
    • /
    • 2019
  • Since the first nuclear reactor first critical, nuclear systems has gone through four generations of history, and the fourth generation nuclear system will be truly realized in the near future. The notions of SVBR and lead-bismuth eutectic alloy coolant put forward by Russia were well received by the international nuclear science community. Lead-bismuth eutectic alloy with the ability of the better neutron economy, the low melting point, the high boiling point, the chemical inertness to water and air and other features, which was considered the most promising coolant for the 4th generation nuclear reactors. This study mainly focuses on the structural design optimization of the 4th-generation reactor coolant pump, including analysis of external characteristics, inner flow, and transient characteristic. It was found that: the reactor coolant pump with a central symmetrical dual-outlet volute structure has better radial-direction balance, the pump without guide vane has better hydraulic performance, and the pump with guide vanes has worse torsional vibration and pressure pulsation. This study serves as experience accumulation and technical support for the development of the 4th generation nuclear energy system.

A performance study and conceptual design on the ramp tabs of the thrust vector control (추력방향제어장치인 램 탭의 개념설계 및 성능 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Soon-Jong;Park, Jong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3068-3073
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the performance study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and shadow graph. Numerical simulation was also performed to study flow characteristics and interactions between ramp tabs. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

  • PDF

Leakage Flow Influence on SHF pump model performances

  • Dupont, Patrick;Bayeul-Laine, Annie-Claude;Dazin, Antoine;Bois, Gerard;Roussette, Olivier;Si, Qiaorui
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.193-201
    • /
    • 2015
  • This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 9.06 code (RANS frozen and unsteady calculations). Some results were already presented at the XXth IAHR Symposium for three flowrates for RANS frozen and URANS calculations. In the present paper, comparisons between URANS calculations with and without leakages and experimental results are presented and discussed for these flow rates. The performances of the diffuser obtained by numerical calculations are compared to those obtained by the three-holes probe measurements. The comparisons show the influence of fluid leakages on global performances and a real improvement concerning the efficiency of the diffuser, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.

The Role of Slits and Swirl Vanes on the Turbulent Flow Fields in Gun-Type Gas Burner with a Cone-Type Baffle Plate (콘형 배플판을 갖는 Gun식 가스버너의 난류유동장에 대한 슬릿과 스월베인의 역할)

  • Kim, Jang-Kweon;Jeong, Kyu-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.466-475
    • /
    • 2003
  • The gun-type gas burner adopted in this study is generally composed of eight slits and swirl vanes. Thus, this paper is studied to investigate the effect of slits and swirl vanes on the turbulent flow fields in the horizontal plane of gas swirl burner with a cone type baffle plate measured by using X-probe from hot-wire anemometer system. This experiment is carried out at flow rate 450 $\ell$/min in the test section of subsonic wind tunnel. The axial mean velocity component in the case of burner model with only swirl vanes shows the characteristic that spreads more remarkably toward the radial direction than axial one, it does, however, directly opposite tendency in the case of burner model with only slits. Consequently. both slits and swirl vanes composing of gun-type gas burner play an important role in decrease of the speed near slits and increase of the flow speed in the central part of a burner because the biggest speed spurted from slits encircles rotational flow by swirl vanes and it drives main flow toward the axial direction. Moreover, the turbulent intensities and turbulent kinetic energy of gun-type gas burner are distributed with a fairly bigger size within X/R<0.6410 than burner models which have only slits or swirl vanes because the rotational flow by swirl vanes and the fast jet flow by slits increase flow mixing, diffusion, and mean velocity gradient effectively.

Leakage Flow Influence on SHF pump model performances

  • Dupont, Patrick;Bayeul-Laine, Annie-Claude;Dazin, Antoine;Bois, Gerard;Roussette, Olivier;Si, Qiaorui
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.274-282
    • /
    • 2015
  • This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 9.06 code (RANS frozen and unsteady calculations). Some results were already presented at the XXth IAHR Symposium for three flowrates for RANS frozen and URANS calculations. In the present paper, comparisons between URANS calculations with and without leakages and experimental results are presented and discussed for these flow rates. The performances of the diffuser obtained by numerical calculations are compared to those obtained by the three-holes probe measurements. The comparisons show the influence of fluid leakages on global performances and a real improvement concerning the efficiency of the diffuser, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.