• Title/Summary/Keyword: Radial Parameters

Search Result 577, Processing Time 0.037 seconds

The progress of KMTNet microlensing

  • Chung, Sun-Ju;Gould, Andrew;Jung, Youn Kil;Hwang, Kyu-Ha;Ryu, Yoon-Hyun;Shin, In-Gu;Yee, Jennifer C.;Zhu, Wei;Kim, Hyun-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.61.3-61.3
    • /
    • 2019
  • We report the status of KMTNet (Korea Microlensing Telescope Network) microlensing. From KMTNet event-finder, we are annually detecting over 2500 microlensing events. In 2018, we have carried out a real-time alert for only the Northern bulge fields. It was very helpful to select Spitzer targets. Thanks to the real-time alert, KMT-only events for which OGLE and MOA could not detect have been largely increased. The KMTNet event-finder and alert-finder algorithms are being upgraded every year. From these, we found 18 exoplanets and various interesting events, such as an exomoon-candidate, a free-floating candidate, and brown dwarfs, which are very difficult to be detected by other techniques including radial velocity and transit. In 2019, the KMTNet alert will be available in real-time for all bulge fields. As before, we will continue to collaborate with Spitzer team to measure the microlens parallaxes, which are required for estimating physical parameters of the lens. Thus, the KMTNet alert will be helpful to select Spitzer targets again. Also we plan to do follow-up observations for high-magnification events to study the planet multiplicity function. The KMTNet alert will play an important role to do follow-up observations for high-magnification events. Also, we will search for free-floating planets with short timescale (< 3 days) to study the planet frequency in our Galaxy.

  • PDF

Physical nature of the eclipsing δ Scuti star AO Serpentis

  • Park, Jang-Ho;Lee, Jae Woo;Hong, Kyeongsoo;Koo, Jae-Rim;Kim, Chun-Hwey
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.86-86
    • /
    • 2019
  • We present BV photometric observations and high-resolution spectra of AO Ser, which were obtained at the Mt. Lemmon Optical Astronomy Observatory (LOAO) and the Bohyunsan Optical Astronomy Observatory (BOAO), respectively, in 2017. The radial velocities (RVs) for both components were measured, and the effective temperature of the primary star was found to be $T_{eff,1}=8,820{\pm}62K$ by a comparison of the observed spectra and the Kurucz models. A unique set of fundamental parameters of AO Ser were derived for the first time by a simultaneous analysis of the light and RV curves. The results indicate that our program target is a semi-detached eclipsing system with values of $M_1=2.06{\pm}0.11M_{\odot}$ and $M_2=0.41{\pm}0.03M_{\odot}$, $R_1=1.54{\pm}0.03R_{\odot}$ and $R_2=1.30{\pm}0.02R_{\odot}$, and $L_1=12.9{\pm}0.2L_{\odot}$ and $L_2=0.9{\pm}0.3L_{\odot}$. We applied multiple frequency analyses to the eclipse-subtracted light residuals. As a result, two frequencies of $f_1=21.85151days^{-1}$ and $f_2=23.48405days^{-1}$ were detected and their pulsation constants were calculated to $Q_1=0.0344days$ and $Q_2=0.0320days$. The pulsational characteristics and the position in the HR diagram demonstrate that the primary star is a ${\delta}$ Sct pulsator.

  • PDF

Structural Behavior Analysis of Cap Shaped as an Arch for Suction-Installed Cofferdam (아치형 석션 가물막이 상판의 구조거동 분석)

  • Kim, Jeongsoo;Jeong, Youn-Ju;Park, Min-Su;Song, Sunghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.391-399
    • /
    • 2020
  • In this study, the behaviors of a suction cap shaped as an arch were analyzed using finite element models. The fundamental structural behaviors of both flat- and arch-type caps were compared, and the advantages of the arch-shaped cap were explained. Moreover, the effects of geometric parameters and stiffener arrangements on the stress and deformation of the arch-shaped caps were investigated by comparisons of the changes in the behaviors of the caps. Additionally, the effects of boundary condition at the edge of the cap were analyzed to study the interactions between the cap and cofferdam walls; these results were used to derive the fundamental structural design of stiffened arch caps. Unlike flat caps, the results showed that ring stiffeners could improve the structural behaviors of arch caps remarkably, while the contributions of the radial stiffeners to the structural behaviors of the caps are dependent on constraints at the edges of the caps.

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers

  • Feng, Hongwei;Shen, Daoming;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.711-731
    • /
    • 2020
  • This paper deals with free vibration of FG sandwich annular sector plates on Pasternak elastic foundation with different boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. The influence of carbon nanotubes (CNTs) waviness, aspect ratio, internal pores and graphene platelets (GPLs) on the vibrational behavior of functionally graded nanocomposite sandwich plates is investigated in this research work. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness of upper and bottom layers of the sandwich sectorial plates and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The core of structure is porous and the internal pores and graphene platelets (GPLs) are distributed in the matrix of core either uniformly or non-uniformly according to three different patterns. The elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. A semi-analytic approach composed of 2D-Generalized Differential Quadrature Method (2D-GDQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The new results can be used as benchmark solutions for future researches.

Development of Turbo Expanders with Hydrostatic Bearings for Hydrogen Liquefaction Plants (정압 베어링을 적용한 수소 액화 공정용 터보 팽창기 개발)

  • Lee, Donghyun;Kim, Byungock;Park, Mooryong;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • This paper presents a hydrostatic bearing design and rotordynamic analysis of a turbo expander for a hydrogen liquefaction plant. Th~e turbo expander includes the turbine and compressor wheel assembled to a shaft supported by two hydrostatic radial and thrust bearings. The rated speed is 75,000 rpm and the rated power is 6 kW. For the bearing operation, we use pressurized air at 8.5 bar as the lubricant that is supplied to the bearing through the orifice restrictor. We calculate the bearing stiffness and flow rate for various gauge pressure ratios and select the orifice diameter providing the maximum bearing stiffness. Additionally, we conduct a rotordynamic analysis based on the calculated bearing stiffness and damping considering design parameters of the turbo expander. The predicted Cambell diagram indicates that there are two critical speeds under the rated speed and there exists a sufficient separation margin for the rated speed. In addition, the predicted rotor vibration is under 1 ㎛ at the rated speed. We conduct the operating test of the turbo expander in the test rig. For the operation, we supply pressurized air to the turbine and monitor the shaft vibration during the test. The test results show that there are two critical speeds under the rated speed, and the shaft vibration is controlled under 2.5 ㎛.

Absolute Dimensions And Period Changes Of The Semi-Detached Algol Type Binary XZ Canis Minoris

  • Kim, Hye-Young;Kim, Chun-Hwey;Hong, Kyeongsoo;Jeong, Min-Ji;Park, Jang-Ho;Song, Mi-Hwa;Lee, Jae Woo;Lee, Chung-Uk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.64.1-64.1
    • /
    • 2019
  • The first high-resolution spectroscopic and new multiband photometric observations of the semi-detached Algol type binary XZ CMi were performed at the Bohyunsan Optical Astronomy Observatory (BOAO) and the Sobaeksan Optical Astronomy Observatory (SOAO), respectively. A total of 34 spectra were obtained using the 1.8 m reflector of the BOAO equipped with the Bohyunsan Optical Echelle Spectrograph to construct the radial velocity (RV) curves of the eclipsing pair. New BVRI photometric light curves were also covered by using the SOAO 61cm reflector and a CCD camera. A detailed analysis of all eclipse timings shows that the orbital period of XZ CMi has varied in an upward parabolic variation superposed on a sinusoidal oscillation with a period of 38.0 yr and a semi-amplitude of 0.0071 days. From the spectral analysis, the effective temperature and the projected rotational velocity of the primary component were determined to be Teff,1 = 7387±161 K and v1sini = 122±6 km s-1, respectively. Our simultaneous synthesis of the double-lined RV and BVRI light curves gives the reliable system parameters of XZ CMi with a mass ratio (q) of 0.314, an orbital inclination (i) of 81.9 deg and a large temperature difference (∆T) of 2481 K. The individual masses and radii of both components are M1 = 1.91±0.08M, M2 = 0.60±0.02M, R1 = 1.60±0.02R, R2 = 1.13±0.02R, respectively. Although the primary component is located inside the δ Sct and γ Dor instability strips, no evidence of pulsation in the system was detected. The possible evolutionary status of XZ CMi is discussed.

  • PDF

LEU+ loaded APR1400 using accident tolerant fuel cladding for 24-month two-batch fuel management scheme

  • Husam Khalefih;Taesuk Oh;Yunseok Jeong;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2578-2590
    • /
    • 2023
  • In this work, a 24-month two-batch fuel management strategy for the APR1400 using LEU + has been investigated, where enrichments of 5.9 and 5.2 w/o are utilized in lieu of the conventional 4-5 w/o UO2 fuel. In addition, an Accident Tolerant Fuel (ATF) clad based on the swaging technology is applied to APR1400 fuel assemblies. In this special ATF clad design, both outer and inner SS316 layers protect the conventional zircaloy clad. Erbia (Er2O3) is introduced as a burnable absorber with two-fold goals to lower the critical boron concentration in the long-cycle LEU + loaded core as well as to handle the LEU + fuel in the existing front-end fuel facilities without renewing the license. Two types of fuel assemblies with different loading of gadolinia (Gd2O3) are considered to control both the reactivity and the core radial power distribution. The erbia burnable absorber is uniformly admixed with UO2 in all fuel pins except for the gadolinia-bearing ones. In this study, two core designs were devised with different erbia loading, and core performance and safety parameters were evaluated for each case in comparison with a core design without any burnable absorbers. The core analysis was done using the two-step method. First, cross-sections are generated by the SERPENT 2 Monte Carlo code, and the 3-D neutronic analysis is performed with an in-house multi-physics nodal code KANT.

Physicomechanical Properties Enhancement of Fast-Growing Wood Impregnated with Wood Vinegar Animal Adhesive

  • Efrida BASRI;SAEFUDIN;Mahdi MUBAROK;Wayan DARMAWAN;Jamal BALFAS;Yelin ADALINA;Yusuf Sudo HADI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.542-554
    • /
    • 2023
  • This study is a continuation of our previous work, which focused on the resistance of jabon wood to termites after impregnation with wood vinegar (WV) and animal-based adhesive (kak). This paper presents the physicomechanical properties of fast-growing jabon wood impregnated with kak at two concentrations (8% and 10%) in wood vinegar or water as a solvent with and without 4% borax. The physical properties of the impregnation solution, that is, viscosity, density, pH, and solid content, were evaluated according to SNI 06-4567-1998. Some physical parameters, such as weight percent gain (WPG), density, water uptake, anti-swelling efficiency (ASE), crystallinity, and mechanical properties, i.e., modulus of elasticity (MOE), modulus of rupture (MOR), and compression strength parallel to the grain (CS), of the impregnated wood were determined. Based on these results, wood impregnated using a mixture of kak in WV presented better physical (increased WPG, density, dimensional stability, and crystallinity) and mechanical (increased MOE/MOR and compression strength) properties than wood impregnated with a water solvent or untreated wood. The wood impregnated using WV and water solvent improved the physical and mechanical properties. The density of the wood increased by 44%-58% and 32%-47%, ASE radial-tangential increased by 38%-45%; 15%-28% after 24 h of water immersion, crystallinity increased by 59%-74%; 36%, MOE increased by 46%-57%; 28%-31%, MOR increased by 29%-34%; 14%-27%, and compression strength increased by 40%-76%; 38%-72% values to untreated wood.

A Fiber Spool's Vibration Sensitivity Optimization Based on Orthogonal Experimental Design

  • Jing Gao;Linbo Zhang;Dongdong Jiao;Guanjun Xu;Xue Deng;Qi Zang;Honglei Yang;Ruifang Dong;Tao Liu;Shougang Zhang
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.45-55
    • /
    • 2024
  • A fiber spool with ultra-low vibration sensitivity has been demonstrated for the ultra-narrow-linewidth fiber-stabilized laser by the multi-object orthogonal experimental design method, which can achieve the optimization object and analysis of influence levels without extensive computation. According to a test of 4 levels and 4 factors, an L16 (44) orthogonal table is established to design orthogonal experiments. The vibration sensitivities along the axial and radial directions and the normalized sums of the vibration sensitivities are determined as single objects and comprehensive objects, respectively. We adopt the range analysis of object values to obtain the influence levels of the four design parameters on the single objects and the comprehensive object. The optimal parameter combinations are determined by both methods of comprehensive balance and evaluation. Based on the corresponding fractional frequency stability of ultra-narrow-linewidth fiber-stabilized lasers, we obtain the final optimal parameter combination A3B1C2D1, which can achieve the fiber spool with vibration sensitivities of 10-12/g magnitude. This work is the first time to use an orthogonal experimental design method to optimize the vibration sensitivities of fiber spools, providing an approach to design the fiber spool with ultra-low vibration sensitivity.