• Title/Summary/Keyword: Radial Basis Function network

Search Result 321, Processing Time 0.035 seconds

Design of Type-2 Radial Basis Function Neural Networks Modeling for Sewage Treatment Process (하수처리 공정을 위한 Type-2 RBF Neural Networks 모델링 설계)

  • Lee, Seung-Cheol;Kwun, Hak-Joo;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1469-1478
    • /
    • 2015
  • In this paper, The methodology of Type-2 fuzzy set-based Radial Basis Function Neural Network(T2RBFNN) is proposed for Sewage Treatment Process and the simulator is developed for application to the real-world sewage treatment plant by using the proposed model. The proposed model has robust characteristic than conventional RBFNN. architecture of network consist of three layers such as input layer, hidden layer and output layer of RBFNN, and Type-2 fuzzy set is applied to receptive field in contrast with conventional radial basis function. In addition, the connection weights of the proposed model are defined as linear polynomial function, and then are learned through Back-Propagation(BP). Type reduction is carried out by using Karnik and Mendel(KM) algorithm between hidden layer and output layer. Sewage treatment data obtained from real-world sewage treatment plant is employed to evaluate performance of the proposed model, and their results are analyzed as well as compared with those of conventional RBFNN.

Design Optimization of a Centrifugal Compressor Impeller Considering the Meridional Plane (자오면 형상을 고려한 원심압축기 임펠러 최적설계)

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, shape optimization based on three-dimensional flow analysis has been performed for impeller design of centrifugal compressor. To evaluate the objective function of an isentropic efficiency, Reynolds-averaged Navier-Stokes equations are solved with SST (Shear Stress Transport) turbulence model. The governing equations are discretized by finite volume approximations. The optimization techniques based on the radial basis neural network method are used for the optimization. Latin hypercube sampling as design of experiments is used to generate thirty design points within design space. Sequential quadratic programming is used to search the optimal point based on the radial basis neural network model. Four geometrical variables concerning impeller shape are selected as design variables. The results show that the isentropic efficiency is enhanced effectively from the shape optimization by the radial basis neural network method.

Design of a Time-delay Compensator Using Neural Network In a Tele-operation System (원격 제어 시스템에서의 신경망을 이용한 시간 지연 보상 제어기 설계)

  • Choi, Ho-Jin;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • In this paper, a time-delay problem of a tele-operated control system is investigated and compensated by neural network. The smith predictor requires an exact system model to deal with a time-delay in the system. To compensate for modeling errors in the configuration of the Smith predictor, a neural network approach is presented. Based on forming the Smith predictor structure, the radial basis function(RBF) neural network estimator is used. Simulation and experimental studies are conducted to show the functionality of the proposed method.

Signal Processing Techniques Based on Adaptive Radial Basis Function Networks for Chemical Sensor Arrays

  • Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.161-172
    • /
    • 2016
  • The use of a chemical sensor array can help discriminate between chemicals when comparing one sample with another. The ability to classify pattern characteristics from relatively small pieces of information has led to growing interest in methods of sensor recognition. A variety of pattern recognition algorithms, including the adaptive radial basis function network (RBFN), may be applicable to gas and/ or odor classification. In this paper, we provide a broad review of approaches for various types of gas and/or odor identification techniques based on RBFN and drift compensation techniques caused by sensor poisoning and aging.

Pattern Classification of Two Classes' Problem Using Polynomial based Radial Basis Function Neural Networks (다항식기반 RBF 신경회로망을 이용한 2-클래스 문제에 대한 패턴분류)

  • Kim, Gil-Sung;Park, Byoung-Jun;Oh, Sung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.451-452
    • /
    • 2007
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경회로망(Polynomial based Radial Basis Function Neural Networks)을 설계하고 이를 2-클래스 패턴 분류 문제에 응용하여 그 성능을 분석한다. 제안된 다항식기반 RBF 신경회로망은 입력층, 은닉층, 출력 층으로 이루어진다. 입력층은 입력 벡터의 값들을 은닉 층으로 전달하는 기능을 수행하고 은닉층은 Fuzzy c-means 클러스터링을 통하여 뉴런의 출력 값으로 내보낸다. 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습된다. Networks의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의해 퍼지추론의 결과로서 얻어진다. 제안된 다항식기반 RBF 신경회로망은 각기 다른 4종류의 2-클래스 분류 문제에 적용 및 평가되어 분류기로써의 성능을 분석한다.

  • PDF

Radial Basis Function Neural Networks (RBFNN) and p-q Power Theory Based Harmonic Identification in Converter Waveforms

  • Almaita, Eyad K.;Asumadu, Johnson A.
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.922-930
    • /
    • 2011
  • In this paper, two radial basis function neural networks (RBFNNs) are used to dynamically identify harmonics content in converter waveforms based on the p-q (real power-imaginary power) theory. The converter waveforms are analyzed and the types of harmonic content are identified over a wide operating range. Constant power and sinusoidal current compensation strategies are investigated in this paper. The RBFNN filtering training algorithm is based on a systematic and computationally efficient training method called the hybrid learning method. In this new methodology, the RBFNN is combined with the p-q theory to extract the harmonics content in converter waveforms. The small size and the robustness of the resulting network models reflect the effectiveness of the algorithm. The analysis is verified using MATLAB simulations.

Using radial basis function neural networks to model torsional strength of reinforced concrete beams

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.3 no.5
    • /
    • pp.335-355
    • /
    • 2006
  • The application of radial basis function neural networks (RBFN) to predict the ultimate torsional strength of reinforced concrete (RC) beams is explored in this study. A database on torsional failure of RC beams with rectangular section subjected to pure torsion was retrieved from past experiments in the literature; several RBFN models are sequentially built, trained and tested. Then the ultimate torsional strength of each beam is determined from the developed RBFN models. In addition, the predictions of the RBFN models are also compared with those obtained using the ACI 318 Code equations. The study shows that the RBFN models give reasonable predictions of the ultimate torsional strength of RC beams. Moreover, the results also show that the RBFN models provide better accuracy than the existing ACI 318 equations for torsion, both in terms of root-mean-square error and coefficients of determination.

Servo-Writing Method using Feedback Error Learning Neural Networks for HDD (피드백 오차 학습 신경회로망을 이용한 하드디스크 서보정보 기록 방식)

  • Kim, Su-Hwan;Chung, Chung-Choo;Shim, Jun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.699-701
    • /
    • 2004
  • This paper proposes the algorithm of servo- writing based on feedback error learning neural networks. The controller consists of feedback controller using PID and feedforward controller using gaussian radial basis function network. Because the RBFNs are trained by on-line rule, the controller has adaptation capability. The performance of the proposed controller is compared to that of conventional PID controller. Proposed algorithm shows better performance than PID controller.

  • PDF

APPLICATION OF NEURAL NETWORK FOR THE CLOUD DETECTION FROM GEOSTATIONARY SATELLITE DATA

  • Ahn, Hyun-Jeong;Ahn, Myung-Hwan;Chung, Chu-Yong
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.34-37
    • /
    • 2005
  • An efficient and robust neural network-based scheme is introduced in this paper to perform automatic cloud detection. Unlike many existing cloud detection schemes which use thresholding and statistical methods, we used the artificial neural network methods, the multi-layer perceptrons (MLP) with back-propagation algorithm and radial basis function (RBF) networks for cloud detection from Geostationary satellite images. We have used a simple scene (a mixed scene containing only cloud and clear sky). The main results show that the neural networks are able to handle complex atmospheric and meteorological phenomena. The experimental results show that two methods performed well, obtaining a classification accuracy reaching over 90 percent. Moreover, the RBF model is the most effective method for the cloud classification.

  • PDF

Design of RBF-based Polynomial Neural Network And Optimization (방사형 기저 함수 기반 다항식 뉴럴네트워크 설계 및 최적화)

  • Kim, Ki-Sang;Jin, Yong-Ha;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1863_1864
    • /
    • 2009
  • 본 연구에서는 복잡한 비선형 모델링 방법인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 PNN(Polynomial Neural Network)을 접목한 새로운 형태의 Radial Basis Function Polynomial Neural Network(RPNN)를 제안한다. RBF 뉴럴 네트워크는 빠른 학습 시간, 일반화 그리고 단순화의 특징으로 비선형 시스템 모델링 등에 적용되고 있으며, PNN은 생성된 노드들 중에서 우수한 결과값을 가진 노드들을 선택함으로써 모델의 근사화 및 일반화에 탁월한 효과를 가진 비선형 모델링 방법이다. 제안된 RPNN모델의 기본적인 구조는 PNN의 형태를 이루고 있으며, 각각의 노드는 RBF 뉴럴 네트워크로 구성하였다. 사용된 RBF 뉴럴 네트워크에서의 커널 함수로는 FCM 클러스터링을 사용하였으며, 각 노드의 후반부는 다항식 구조로 표현하였다. 또한 입력개수, 입력변수, 클러스터의 개수를 PSO알고리즘(Particle Swarm Optimization)을 사용하여 최적화 시켰다. 제안한 모델의 적용 및 유용성을 비교 평가하기 위하여 비선형 데이터를 이용하여 그 우수성을 보인다.

  • PDF