• Title/Summary/Keyword: Radargram

Search Result 2, Processing Time 0.015 seconds

3-Dimensional Subsurface Imaging Using Geostatistics (공간통계학을 이용한 3차원 지하영상화)

  • Shon, Ho-Woong;Lee, Kang-Won;Park, Eun-Ho
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2009.04a
    • /
    • pp.151-156
    • /
    • 2009
  • Forward modelling of ground penetrating radar (GPR) data is implemented using a new finite element ray tracing technique. The method is different from conventional ray tracing techniques in that the radar cross section of buried targets, the effective area of the receiving antenna, and the attenuation along the raypath are computed. The forward models are used to understand radar signatures measured across various ground structures which are important in detecting engineering hazards at construction sites, void spaces beneath simulated road beds, as well as a learning tool to avoid pitfalls in radargram interpretation. Forward modelling of radar data also can be used in predicting possible structures present at cultural property sites.

  • PDF

Analysis of the under Pavement Cavity Growth Rate using Multi-Channel GPR Equipment (멀티채널 GPR 장비를 이용한 도로하부 공동의 크기 변화 분석)

  • Park, Jeong Jun;Kim, In Dae
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.60-69
    • /
    • 2020
  • Purpose: Cavity growth process monitoring is to periodically monitor changes in common size and topography for general and observational grades to predict the rate of common growth. The purpose of this study is to establish a systematic cavity management plan by evaluating the general and observational class community in a non-destructive method. Method: Using GPR exploration equipment, the acquired surface image and the surrounding status image are analyzed in the GPR probe radargram in depth, profile, and cross section of the location. The exact location is selected using the distance and surrounding markings shown on the road surface of the initial detection cavity, and the test cavity is analyzed by calling the radar at the corresponding location. Result: As a result of monitoring tests conducted at a cavity 30 sites of general and observation grade, nine sites have been recovered. Changes in scale were seen in 21 cavity locations, and changes in size and grade occurred in 13 locations. Conclusion: The under road cavity is caused by various causes such as damage to the burial site, poor construction, soil leakage caused by groundwater leakage, waste and ground vibration. Among them, indirect factors could infer the effects of groundwater and localized rainfall.