• 제목/요약/키워드: Radar network

검색결과 265건 처리시간 0.025초

비접촉형 심박수 측정 정확도 향상을 위한 인공지능 기반 CW 레이더 신호처리 (Artificial Intelligence-Based CW Radar Signal Processing Method for Improving Non-contact Heart Rate Measurement)

  • 윤원열;권남규
    • 대한임베디드공학회논문지
    • /
    • 제18권6호
    • /
    • pp.277-283
    • /
    • 2023
  • Vital signals provide essential information regarding the health status of individuals, thereby contributing to health management and medical research. Present monitoring methods, such as ECGs (Electrocardiograms) and smartwatches, demand proximity and fixed postures, which limit their applicability. To address this, Non-contact vital signal measurement methods, such as CW (Continuous-Wave) radar, have emerged as a solution. However, unwanted signal components and a stepwise processing approach lead to errors and limitations in heart rate detection. To overcome these issues, this study introduces an integrated neural network approach that combines noise removal, demodulation, and dominant-frequency detection into a unified process. The neural network employed for signal processing in this research adopts a MLP (Multi-Layer Perceptron) architecture, which analyzes the in-phase and quadrature signals collected within a specified time window, using two distinct input layers. The training of the neural network utilizes CW radar signals and reference heart rates obtained from the ECG. In the experimental evaluation, networks trained on different datasets were compared, and their performance was assessed based on loss and frequency accuracy. The proposed methodology exhibits substantial potential for achieving precise vital signals through non-contact measurements, effectively mitigating the limitations of existing methodologies.

복소수 ResNet 네트워크 기반의 SAR 영상 물체 인식 알고리즘 (A Complex Valued ResNet Network Based Object Detection Algorithm in SAR Images)

  • 황인수
    • 한국군사과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.392-400
    • /
    • 2021
  • Unlike optical equipment, SAR(Synthetic Aperture Radar) has the advantage of obtaining images in all weather, and object detection in SAR images is an important issue. Generally, deep learning-based object detection was mainly performed in real-valued network using only amplitude of SAR image. Since the SAR image is complex data consist of amplitude and phase data, a complex-valued network is required. In this paper, a complex-valued ResNet network is proposed. SAR image object detection was performed by combining the ROI transformer detector specialized for aerial image detection and the proposed complex-valued ResNet. It was confirmed that higher accuracy was obtained in complex-valued network than in existing real-valued network.

CNN 강우여부 분류기를 적용한 ANN 기반 X-Band 레이다 유의파고 보정 (Estimation of Significant Wave Heights from X-Band Radar Based on ANN Using CNN Rainfall Classifier)

  • 김희연;안경모;오찬영
    • 한국해안·해양공학회논문집
    • /
    • 제33권3호
    • /
    • pp.101-109
    • /
    • 2021
  • 항해용 X-band 레이다를 이용한 파랑관측은 해수면에 후방산란 된 전자기파 이미지를 분석하여 이루어진다. 1분당 42개의 해수면 시계열 이미지로부터 3차원 FFT를 계산하고 변조전달함수(Modulation Transfer Function)를 구하여 파랑정보를 추출한다. 따라서 레이다 파고계로 계측한 유의파고의 정확도는 X-band 레이다 영상의 상태에 따라 결정된다. 2020년 여름 태풍 마이삭과 하이선 내습 시 강릉 안인 해안에 설치된 X-band 레이다 파고계로 관측한 유의파고의 오차가 크게 발생하였다. 이는 태풍 내습 시 급격히 유의파고가 증가하는 한편 강한 강우가 동반되어 X-band 레이다 영상의 품질이 저하되었기 때문이다. 최대 오차 발생 이전까지 많은 강우가 있었음이 확인된다. 본 연구에서는 convolution neural network(CNN)을 이용하여 레이다 이미지로부터 강우 여부를 분류하고 강우여부에 따라 강우시 인공신경망 모델을 적용하여 태풍 시 유의파고 관측 정확도를 향상시켰다. 폭우를 동반한 태풍 시 레이다 자료 특성에 기반하여 인공신경망 유의파고 산출 알고리즘을 개선하고 이를 통해 X-band 레이다 파고계의 정확도를 향상시키는 방법을 제시하였다.

미계측 지역에서 토석류 유발강우의 산정을 위한 레이더 강우의 활용에 대한 연구 (A Study on Use of Radar Rainfall for Rainfall-Triggered Mud-Debris Flows at an Ungauged Site)

  • 전환돈;이지호;김수전
    • 한국물환경학회지
    • /
    • 제32권3호
    • /
    • pp.310-317
    • /
    • 2016
  • It has been a big problem to estimate rainfall for the studies of mud-debris flows because the estimated rainfall from the nearest AWS (Automatic Weather Station) can tend to be quite inaccurate at individual sites. This study attempts to improve this problem through accurate rainfall depth estimation by applying an artificial neural network with radar rainfall data. For this, three models were made according to utilizing methodologies of rainfall data. The first model uses the nearest rainfall, observing the site from an ungauged site. The second uses only radar rainfall data and the third model integrates the above two models using both radar and observed rainfall at the sites around the ungauged site. This methodology was applied to the metropolitan area in Korea. It appeared as though the third model improved rainfall estimations by the largest margin. Therefore, the proposed methodology can be applied to forecast mud-debris flows in ungageed sites.

이미지 인페인팅을 활용한 레이다 이미지 노이즈 제거 (Noise Removal of Radar Image Using Image Inpainting)

  • 전동민;오상진;임채옥;신성철
    • 대한조선학회논문집
    • /
    • 제59권2호
    • /
    • pp.118-124
    • /
    • 2022
  • Marine environment analysis and ship motion prediction during ship navigation are important technologies for safe and economical operation of autonomous ships. As a marine environment analysis technology, there is a method of analyzing waves by measuring the sea states through images acquired based on radar(radio detection and ranging) signal. However, in the process of deriving marine environment information from radar images, noises generated by external factors are included, limiting the interpretation of the marine environment. Therefore, image processing for noise removal is required. In this study, image inpainting by partial convolutional neural network model is proposed as a method to remove noises and reconstruct radar images.

위성 적외영상 자료를 이용한 현업용 기상레이더 반사도 합성자료의 채프에코 제거 (Elimination of Chaff Echoes in Reflectivity Composite from an Operational Weather Radar Network using Infrared Satellite Data)

  • 한혜영;허복행;정성화;이규원;유철환;이종호
    • 대기
    • /
    • 제21권3호
    • /
    • pp.285-300
    • /
    • 2011
  • To discriminate and eliminate chaff echoes in radar measurements, a new removal algorithm in two-dimensional reflectivity composite at the height of 1.5 km has been developed by using the brightness temperature($T_B$) obtained from MTSAT-1R. This algorithm utilizes the fact that chaffs are not appeared in infrared satellite data of MTSAT-1R, but detected in radar measurements due to their significant backscattering in the given radar wavelength. The algorithm is evaluated for three different situations: chaff only, chaff mixed with convective storms, and chaff covered with clouds. The algorithm shows excellent performance for the cases of chaff only and chaff mixed with convective storms. However, the performance of the algorithm significantly depends on the presence of clouds. Thus, the statistical analysis of $T_B$ is performed in order to optimize the monthly threshold.

다중 입출력 FMCW 레이다를 활용한 합성곱 신경망 기반 사람 동작 인식 시스템 (CNN Based Human Activity Recognition System Using MIMO FMCW Radar)

  • 김준성;심재용;장수림;임승찬;정윤호
    • 한국항행학회논문지
    • /
    • 제28권4호
    • /
    • pp.428-435
    • /
    • 2024
  • 본 논문에서는 다중 입출력 주파수 변조 연속파 (MIMO FMCW; multiple input multiple output frequency modulation continuous wave) 레이다 기반 HAR (human activity recognition) 시스템의 설계 및 구현 결과를 제시하였다. 다중 입력 다중 출력 레이다 센서를 통한 포인트 클라우드 데이터를 활용하여 HAR 시스템을 구현하면 사생활 보호와 함께, 안전성 및 정확성 측면에서 장점이 있다. 본 논문에서는, MIMO FMCW 레이다 센서로부터의 포인트클라우드 데이터 기반 HAR을 위해 PointPillars와 DS-CNN (depthwise separable convolutional neural network)을 기반으로 최적 경량 네트워크를 개발하였다. 경량화된 네트워크를 통해 고해상도 포인트 클라우드 데이터를 처리하여 높은 인식 정확도와 함께 효율성을 달성하였다. 결과적으로, 98.27%의 정확도와 11.27M Macs (multiply-accumulates) 연산 복잡도로 구현 가능함을 확인하였다. 또한, 개발한 모델을 라즈베리파이(Raspberry-Pi) 시스템에 구현하여 최대 8 fps의 속도로 포인트 클라우드 데이터 처리가 가능함을 확인하였다.

기상레이더 반사도 자료의 계층적 압축 기법 (Hierarchical Compression Technique for Reflectivity Data of Weather Radar)

  • 장봉주;이건행;임상훈;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제18권7호
    • /
    • pp.793-805
    • /
    • 2015
  • Nowadays the amount of data obtained from advanced weather radars is growing to provide higher spatio-temporal resolution. Accordingly radar data compression is important to use limited network bandwidth and storage effectively. In this paper, we proposed a hierarchical compression method for weather radar data having high spatio-temporal resolution. The method is applied to radar reflectivity and evaluated in aspects of accuracy of quantitative rainfall intensity. The technique provides three compression levels from only 1 compressed stream for three radar user groups-signal processor, quality controller, weather analyst. Experimental results show that the method has maximum 13% and minimum 33% of compression rates, and outperforms 25% higher than general compression technique such as gzip.

방사선 레이다 신호 구조에 적합한 물체 추적 기법 (Object Extraction Technique Adequate for Radial Shape's RADAR Signal Structure)

  • 김도현;박은경;차의영
    • 제어로봇시스템학회논문지
    • /
    • 제9권7호
    • /
    • pp.536-546
    • /
    • 2003
  • We propose an object extraction technique adequate for the radial shape's radar signal structure for the purpose of implementing ARPA(Automatic Radar Plotting Aid) installed in the vessel. The radar signal data are processed by interpolation and accumulation to acquire a qualified image. The objects of the radar image have characteristics of having different shape and size as it gets far from the center, and it is not adequate for clustering generally. Therefore, this study designs a new vigilance distance model of elliptical shape and adopts this model in the ART2 neural network. We prove that the proposed clustering method makes it possible to extract objects adaptively and to separate the connected objects effectively.

Bias-correction of Dual Polarization Radar rainfall using Convolutional Autoencoder

  • Jung, Sungho;Le, Xuan Hien;Oh, Sungryul;Kim, Jeongyup;Lee, GiHa
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.166-166
    • /
    • 2020
  • Recently, As the frequency of localized heavy rains increases, the use of high-resolution radar data is increasing. The produced radar rainfall has still gaps of spatial and temporal compared to gauge observation rainfall, and in many studies, various statistical techniques are performed for correct rainfall. In this study, the precipitation correction of the S-band Dual Polarization radar in use in the flood forecast was performed using the ConvAE algorithm, one of the Convolutional Neural Network. The ConvAE model was trained based on radar data sets having a 10-min temporal resolution: radar rainfall data, gauge rainfall data for 790minutes(July 2017 in Cheongju flood event). As a result of the validation of corrected radar rainfall were reduced gaps compared to gauge rainfall and the spatial correction was also performed. Therefore, it is judged that the corrected radar rainfall using ConvAE will increase the reliability of the gridded rainfall data used in various physically-based distributed hydrodynamic models.

  • PDF