The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.26
no.6
/
pp.564-571
/
2015
In this paper, we propose a multiple-input, multiple-output(MIMO) interferometric radar network system to generate three-dimensional (3-D) MIMO interferometric inverse synthetic aperture radar(InISAR) image. In the MIMO interferometric radar network system, the MIMO InISAR image can be formed by an incoherent summation of multiple bistatic InISAR images that show 3-D scatterers of a target observed at different bistatic interfermetric configurations, respectively. Because bistatic-sccattering physics of a target at different viewpoints are visible in the 3-D MIMO InISAR image, it can provide various scatterering physics properties of a target, and can be used for target classification as a useful feature vector. Simulations validate that our proposed method successfully finds locations of scatterers of a target in MIMO radar interferometric network system.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.136-136
/
2021
In this study, a deep convolutional neural network (DCNN) model is proposed for short-term precipitation forecasting using weather radar-based images. The DCNN model is a combination of convolutional neural networks, autoencoder neural networks, and U-net architecture. The weather radar-based image data used here are retrieved from competition for rainfall forecasting in Korea (AI Contest for Rainfall Prediction of Hydroelectric Dam Using Public Data), organized by Dacon under the sponsorship of the Korean Water Resources Association in October 2020. This data is collected from rainy events during the rainy season (April - October) from 2010 to 2017. These images have undergone a preprocessing step to convert from weather radar data to grayscale image data before they are exploited for the competition. Accordingly, each of these gray images covers a spatial dimension of 120×120 pixels and has a corresponding temporal resolution of 10 minutes. Here, each pixel corresponds to a grid of size 4km×4km. The DCNN model is designed in this study to provide 10-minute predictive images in advance. Then, precipitation information can be obtained from these forecast images through empirical conversion formulas. Model performance is assessed by comparing the Score index, which is defined based on the ratio of MAE (mean absolute error) to CSI (critical success index) values. The competition results have demonstrated the impressive performance of the DCNN model, where the Score value is 0.530 compared to the best value from the competition of 0.500, ranking 16th out of 463 participating teams. This study's findings exhibit the potential of applying the DCNN model to short-term rainfall prediction using weather radar-based images. As a result, this model can be applied to other areas with different spatiotemporal resolutions.
Automatic modulation classification is essential in radar emitter identification. We propose a cascade classifier by combining a support vector machine (SVM) and convolutional neural network (CNN), considering that noise might be taken as radar signals. First, the SVM distinguishes noise signals by the main ridge slice feature of signals. Second, the complex envelope features of the predicted radar signals are extracted and placed into a designed CNN, where a modulation classification task is performed. Simulation results show that the SVM-CNN can effectively distinguish radar signals from noise. The overall probability of successful recognition (PSR) of modulation is 98.52% at 20 dB and 82.27% at -2 dB with low computation costs. Furthermore, we found that the accuracy of intermediate frequency estimation significantly affects the PSR. This study shows the possibility of training a classifier using complex envelope features. What the proposed CNN has learned can be interpreted as an equivalent matched filter consisting of a series of small filters that can provide different responses determined by envelope features.
Kim, Ho-Kyun;Kim, Jung-Hoon;Son, Young-Tae;Lee, Sang-Ho
Korean Journal of Remote Sensing
/
v.34
no.2_2
/
pp.351-375
/
2018
This paper aims to i) introduce the characteristics of HF ocean radar and the major results and information produced by the radar networks in the Korean coasts to the readers, ii) make an up-to-date inventory of the existing radar systems, and iii) share the information related to the radar operating skill and the ocean current data application. The number of ocean radars has been showing a significant growth over the past 20 years, currently deploying more than 44 radars in the Korean coasts. Most of radars are in operation at the present time for the purposes related to the marine safety, tidal current forecast and understanding of ocean current dynamics, mainly depending on the mission of each organization operating radar network. We hope this overview paper may help expand the applicability of the ocean radar to fisheries, leisure activity on the sea, ocean resource management, oil spill response, coastal environment restoration, search and rescue, and vessel detection etc., beyond the level of understanding of tidal and ocean current dynamics. Additionally we hope this paper contributes further to the surveillance activity on our ocean territory by founding a national ocean radar network frame and to the domestic development of ocean radar system including signal processing technology.
Kim, Geonho;Heo, Jinmoo;Jung, Yongchul;Jung, Yunho
Journal of Advanced Navigation Technology
/
v.22
no.5
/
pp.429-435
/
2018
In radar systems, FFT (fast Fourier transform) operation is necessary to obtain the range and velocity of target, and the design of an FFT processor which operates at high speed is required for real-time implementation. The perfect shuffle network is suitable for high-speed FFT processor. In particular, twice perfect shuffle network based on radix-4 is preferred for very high-speed FFT processor. Moreover, radar systems that requires various velocity resolution should support scalable FFT points. In this paper, we propose a 8~1024-point scalable FFT processor based on twice perfect shuffle network algorithm and present hardware design and implementation results. The proposed FFT processor was designed using hardware description language (HDL) and synthesized to gate-level circuits using $0.65{\mu}m$ CMOS process. It is confirmed that the proposed processor includes logic gates of 3,293K.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.7
/
pp.1858-1872
/
2023
With the advance of radar technologies, the availability of synthetic aperture radar (SAR) images increases. To improve application of SAR images, a management system for SAR images is proposed in this paper. The system provides trainable land cover classification module and display of SAR images on the map. Users of the system can create their own classifier with their data, and obtain the classified results of newly captured SAR images by applying the classifier to the images. The classifier is based on convolutional neural network structure. Since there are differences among SAR images depending on capturing method and devices, a fixed classifier cannot cover all types of SAR land cover classification problems. Thus, it is adopted to create each user's classifier. In our experiments, it is shown that the module works well with two different SAR datasets. With this system, SAR data and land cover classification results are managed and easily displayed.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.11a
/
pp.66-69
/
2017
본 논문에서는 깊은 합성 곱 신경망 (Deep Convolutional Neural Network) 를 이용해서 SAR (Synthetic Aperture Radar) 영상의 반전 잡음 (speckle noise) 성분을 제거하는 기법을 제안하고자 한다. Deep Convolutional Neural Network는 이미지의 데이터 특성에 적합한 딥 러닝 방법이고, 이는 SAR 위성영상의 반전 잡음 제거에 사용해도 효과적이다. 반전 잡음 필터 모델 추정을 위한 학습은 임의로 반전 잡음을 합성한 트레이닝 이미지들과 원본 트레이닝 이미지들을 이용한 회귀모델을 통해 진행된다. 학습을 통해 얻은 반전 잡음 필터는 기존 알고리즘에 비해 우수한 외곽선 보존 성능을 나타냄을 확인하였다.
Monitoring and managing the condition of underground utilities is crucial for ground stability. This study aims to determine whether images obtained using ground penetrating radar (GPR) accurately reflect the characteristics of buried pipelines through image analysis. The investigation focuses on pipelines made from different materials, namely concrete and steel, with concrete pipes tested under various diameters to assess detectability under differing conditions. A total of 400 images are acquired at locations with pipelines, and for comparison, an additional 100 data points are collected from areas without pipelines. The study employs GPR at frequencies of 200 MHz and 600 MHz, and image analysis is performed using machine learning-based convolutional neural network (CNN) techniques. The analysis results demonstrate high classification reliability based on the training data, especially in distinguishing between pipes of the same material but of different diameters. The findings suggest that the integration of GPR and CNN algorithms can offer satisfactory performance in exploring the ground's interior characteristics.
The Journal of Korean Institute of Communications and Information Sciences
/
v.41
no.6
/
pp.611-619
/
2016
Success in modern war depends on electronic warfare. Therefore, It is very important to identify the kind of Radar PRI modulations in a lot of Radar electromagnetic waves. In this paper, I propose an algorithm to identify Linear up Sliding PRI, Non-Linear up Sliding PRI and Linear Down Sliding PRI, Non-Linear Down Sliding PRI among many Radar pulses. We applied not only the TDOA(Time Difference Of Arrival) concept of Radar pulse signals incoming to antennas but also a rising and falling curve characteristics of those PRI's. After making a program by such algorithm, we input each 40 data to those PRI's identification programs and as a result, those programs fully processed the data in according to expectations. In the future, those programs can be applied to the ESM, ELINT system.
Recently, ships have begun using the Asterix CAT 240 format as a method for transmitting radar image data to other devices. However, the Asterix format has a flexible structure that can be defined by the user, and a format structure defined as unsuitable for ship radar operation may undesirably increase navigational equipment network traffic or reduce stability. Therefore, to reduce the traffic of the navigation network and enhance the stability, a method of defining the optimized Asterix CAT 240 format with an appropriate setting value according to the performance of the radar scanner and display device was studied.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.