• Title/Summary/Keyword: Radar image

Search Result 562, Processing Time 0.019 seconds

Improvement of Underground Cavity and Structure Detection Performance Through Machine Learning-based Diffraction Separation of GPR Data (기계학습 기반 회절파 분리 적용을 통한 GPR 탐사 자료의 도로 하부 공동 및 구조물 탐지 성능 향상)

  • Sooyoon Kim;Joongmoo Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.171-184
    • /
    • 2023
  • Machine learning (ML)-based cavity detection using a large amount of survey data obtained from vehicle-mounted ground penetrating radar (GPR) has been actively studied to identify underground cavities. However, only simple image processing techniques have been used for preprocessing the ML input, and many conventional seismic and GPR data processing techniques, which have been used for decades, have not been fully exploited. In this study, based on the idea that a cavity can be identified using diffraction, we applied ML-based diffraction separation to GPR data to increase the accuracy of cavity detection using the YOLO v5 model. The original ML-based seismic diffraction separation technique was modified, and the separated diffraction image was used as the input to train the cavity detection model. The performance of the proposed method was verified using public GPR data released by the Seoul Metropolitan Government. Underground cavities and objects were more accurately detected using separated diffraction images. In the future, the proposed method can be useful in various fields in which GPR surveys are used.

Velocity Estimation of Moving Targets by Azimuth Differentials of SAR Images (SAR 영상의 Azimuth 차분을 이용한 움직이는 물체의 속도측정방법)

  • Park, Jeong-Won;Jung, Hyung-Sup;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • We present an efficient and robust technique to estimate the velocity of moving targets from a single SAR image. In SAR images, azimuth image shift is a well blown phenomenon, which is observed in moving targets having slant-range velocity. Most methods estimated the velocity of moving targets from the distance difference between the road and moving targets or between ship and the ship wake. However, the methods could not be always applied to moving targets because it is difficult to find the road and the ship wake. We propose a method for estimating the velocity of moving targets from azimuth differentials of range-compressed image. This method is based on a phenomenon that Doppler center frequency shift of moving target causes a phase difference in azimuth differential values. The phase difference is linearly distorted by Doppler rate due to the geometry of SAR image. The linear distortion is eliminated from phase removal procedure, and then the constant phase difference is estimated. Finally, range velocity estimates for moving targets are retrieved from the constant phase difference. This technique was tested using an ENVISAT ASAR image in which several unknown ships are presented. In the case of a isolated target, the result was nearly coincident with the result from conventional method. However, in the case of a target which is located near non-target material, the difference of the result between from our algorithm and from conventional method was more than 1m/s.

Multi-purpose Geophysical Measurements System Using PXI (PXI를 이용한 다목적 물리탐사 측정 시스템)

  • Choi Seong-Jun;Kim Jung-Ho;Sung Nak-Hun;Jeong Ji-Min
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.3
    • /
    • pp.224-231
    • /
    • 2005
  • In geophysical field surveys, commercial equipments often fail to resolve the subsurface target or even sometimes fail to be applied because they do not fit to the various field situations or the physical properties of the medium or target. We developed a geophysical measurement system, which can be easily adapted for the various field situations and targets. The system based on PXI with A/D converter and some stand alone equipment such as Network Analyzer was applied to borehole radar survey, borehole sonic measurement and electromagnetic noise measurement. The system for borehole radar survey consists of PXI, Network Analyzer, dipole antennas, GPIB interface is used for PXI to control Network Analyzer. The system for borehole sonic measurement consists of PXI, 24 Bit A/D converter, high voltage pulse generator, transmitting and receiving piezoelectric sensors. The electromagnetic noise measurement system consists of PXI, 24 Bit A/D converter, 2 horizontal component electric field sensors and 2 horizontal and 1 vertical component magnetic filed sensors. The borehole radar system has been successfully applied to detect the width of the artificial tunnel through which the borehole pass and to image buried steel pipe, while the commercial borehole radar equipment failed. The borehole sonic system was tested to detect the width of artificial tunnel and showed a reasonable result. The characteristic of electromagnetic noise was grasped at an urban area with the data from the electromagnetic noise measurement system. The system is also applied to characterize the signal distortion by induction between the electric cables in resistivity survey. The system can be applied various geophysical problems with a simple modification of the system and sensors.

Application of Image Processing Techniques to GPR Data for the Reliability Improvement in Subsurface Void Analysis (지표레이더(GPR) 탐사자료를 이용한 지하공동 분석 시 신뢰도 향상을 위한 영상처리기법의 활용)

  • Kim, Bona;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.61-71
    • /
    • 2017
  • Recently, ground-penetrating radar (GPR) surveys have been actively carried out for precise subsurface void investigation because of the rapid increase of subsidence in urban areas. However, since the interpretation of GPR data was conducted based on the interpreter's subjective decision after applying only the basic data processing, it can result in reliability problems. In this research, to solve these problems, we analyzed the difference between the events generated from subsurface voids and those of strong diffraction sources such as the buried pipeline by applying the edge detection technique, which is one of image processing technologies. For the analysis, we applied the image processing technology to the GRP field data containing events generated from the cavity or buried pipeline. As a result, the main events by the subsurface void or diffraction source were effectively separated using the edge detection technique. In addition, since subsurface voids associated with the subsidence has a relatively wide scale, it is recorded as a gentle slope event unlike the event caused by the strong diffraction source recorded with a sharp slope. Therefore, the directional analysis of amplitude variation in the image enabled us to effectively separate the events by the subsurface void from those by the diffraction source. Interpretation based on these kinds of objective analysis can improve the reliability. Moreover, if suggested techniques are verified to various GPR field data sets, these approaches can contribute to semiautomatic interpretation of large amount of GPR data.

Back-scattering Characteristic Analysis for SAR Calibration Site (SAR 검보정 Site 구축을 위한 후방 산란 특성 분석)

  • Lee, Taeseung;Yang, Dochul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.305-319
    • /
    • 2021
  • The overseas calibration sites such as Mongolia used for Korea Multi-purpose Satellite (KOMPSAT-5 or K5), have a disadvantage in that maintenance and repair costs are high and immediate response is difficult when an unexpected problem occurs. Accordingly, the necessity of establishing a domestic SAR calibration site was suggested, but the progress of related research is insignificant. In this paper, we investigated what conditions should be satisfied in terms of backscattering characteristics to construct a site for SAR satellite image quality evaluation and calibration. First of all, it was selected first by applying general indicators such as accessibility and availability among places recommended as satellite image calibration candidate sitesin Korea. Next, three places, site A (Goheung-gun, Jeollanam-do), site B (Jeonju-si, Jeollabuk-do), and site C (Daedeok Research Complex, Daejeon), were selected as the final candidates because they are relatively wide and easy to install AT or CR. Site A, located in Goheung-gun, Jeollanam-do, was best considered in terms of slope measurements, minimum site area to obtain ISLR, uniformity of DN values and backscatter coefficients, interference by strong reflectors, and backscatter clutter level.

Model for Simulating SAR Images of Earth Surfaces (지표면의 SAR 영상 시뮬레이션 모델)

  • Jung Goo-Jun;Lee Sung-Hwa;Kim In-Seob;Oh Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.6 s.97
    • /
    • pp.615-621
    • /
    • 2005
  • In this paper, a model for simulating synthetic aperture radar(SAR) images of earth surfaces. The earth surfaces include forest area, rice crop field, other agricultural fields, grass field, road, and water surface. At first, the backscattering models are developed for bare soil surfaces, water surfaces, short vegetation fields such as rice fields and grass field, other agriculture areas, and forest areas. Then, the SAR images are generated from the digital elevation model(DEM) and digital terrain map. The DTM includes ten parameters, such as soil moisture, surface roughness, canopy height, leaf width, leaf length, leaf density, branch length, branch density, trunk length, and trunk density, if applicable. The scattering models are verified with measurements, and applied to generate an SAR image for an area.

Precision Assessment of Near Real Time Precise Orbit Determination for Low Earth Orbiter

  • Choi, Jong-Yeoun;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.55-62
    • /
    • 2011
  • The precise orbit determination (POD) of low earth orbiter (LEO) has complied with its required positioning accuracy by the double-differencing of observations between International GNSS Service (IGS) and LEO to eliminate the common clock error of the global positioning system (GPS) satellites and receiver. Using this method, we also have achieved the 1 m positioning accuracy of Korea Multi-Purpose Satellite (KOMPSAT)-2. However double-differencing POD has huge load of processing the global network of lots of ground stations because LEO turns around the Earth with rapid velocity. And both the centimeter accuracy and the near real time (NRT) processing have been needed in the LEO POD applications--atmospheric sounding or urgent image processing--as well as the surveying. An alternative to differential GPS for high accuracy NRT POD is precise point positioning (PPP) to use measurements from one satellite receiver only, to replace the broadcast navigation message with precise post processed values from IGS, and to have phase measurements of dual frequency GPS receiver. PPP can obtain positioning accuracy comparable to that of differential positioning. KOMPSAT-5 has a precise dual frequency GPS flight receiver (integrated GPS and occultation receiver, IGOR) to satisfy the accuracy requirements of 20 cm positioning accuracy for highly precise synthetic aperture radar image processing and to collect GPS radio occultation measurements for atmospheric sounding. In this paper we obtained about 3-5 cm positioning accuracies using the real GPS data of the Gravity Recover and Climate Experiment (GRACE) satellites loaded the Blackjack receiver, a predecessor of IGOR. And it is important to reduce the latency of orbit determination processing in the NRT POD. This latency is determined as the volume of GPS measurements. Thus changing the sampling intervals, we show their latency to able to reduce without the precision degradation as the assessment of their precision.

AQUACULTURE FACILITIES DETECTION FROM SAR AND OPTIC IMAGES

  • Yang, Chan-Su;Yeom, Gi-Ho;Cha, Young-Jin;Park, Dong-Uk
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.320-323
    • /
    • 2008
  • This study attempts to establish a system extracting and monitoring cultural grounds of seaweeds (lavers, brown seaweeds and seaweed fulvescens) and abalone on the basis of both KOMPSAT-2 and Terrasar-X data. The study areas are located in the northwest and southwest coast of South Korea, famous for coastal cultural grounds. The northwest site is in a high tidal range area (on the average, 6.1 min Asan Bay) and has laver cultural grounds for the most. An semi-automatic detection system of laver facilities is described and assessed for spacebome optic images. On the other hand, the southwest cost is most famous for seaweeds. Aquaculture facilities, which cover extensive portions of this area, can be subdivided into three major groups: brown seaweeds, capsosiphon fulvescens and abalone farms. The study is based on interpretation of optic and SAR satellite data and a detailed image analysis procedure is described here. On May 25 and June 2, 2008 the TerraSAR-X radar satellite took some images of the area. SAR data are unique for mapping those farms. In case of abalone farms, the backscatters from surrounding dykes allows for recognition and separation of abalone ponds from all other water-covered surfaces. But identification of seaweeds such as laver, brown seaweeds and seaweed fulvescens depends on the dampening effect due to the presence of the facilities and is a complex task because objects that resemble seaweeds frequently occur, particularly in low wind or tidal conditions. Lastly, fusion of SAR and optic spatial images is tested to enhance the detection of aquaculture facilities by using the panchromatic image with spatial resolution 1 meter and the corresponding multi-spectral, with spatial resolution 4 meters and 4 spectrum bands, from KOMPSAT-2. The mapping accuracy achieved for farms will be estimated and discussed after field verification of preliminary results.

  • PDF

A Study on Indoor Propagation Modeling using Patch Scattering Model (패치산란모델을 이용한 실내 전파모델링에 관한 연구)

  • 석우찬;김진웅;석재호;임재우;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.772-772
    • /
    • 2001
  • In this paper, we proposed the image-based 3D ray-tracing indoor propagation model using patch scattering model which can calculate the scattering phenomenon of the indoor structures. A patch scattering model for modeling indoor structures defines a scattering phenomenon by using RCS(Radar Cross Section) about rectangular patch without complex calculation, for example generating image antennas about each indoor structures. RCS is simply defined as a ratio of scattering power to incident power, and we use bistatic PCS which is simplified numerically by Physical Optics. Also, a simple indoor compensation factor is defined as empirical constant from measured data instead of complex numerical expression because basic patch scattering model cannot include important multipath components, so we san use patch scattering model in indoor environment using indoor compensation factor.

A Study on Indoor Propagation Modeling using Patch Scattering Model (패치산란모델을 이용한 실내 전파모델링에 관한 연구)

  • 석우찬;김진웅;석재호;임재우;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.722-733
    • /
    • 2001
  • In this paper, we proposed the image-based 3D ray-tracing indoor propagation model using patch scattering model which can calculate the scattering phenomenon of the indoor structures. A patch scattering model for modeling indoor structures defines a scattering phenomenon by using RCS(Radar Cross Section) about rectangular patch without complex calculation, for example generating image antennas about each indoor structures. RCS is simply defined as a ratio of scattering power to incident power, and we use bistatic PCS which is simplified numerically by Physical Optics. Also, a simple indoor compensation factor is defined as empirical constant from measured data instead of complex numerical expression because basic patch scattering model cannot include important multipath components, so we san use patch scattering model in indoor environment using indoor compensation factor.

  • PDF