• Title/Summary/Keyword: Radar cross section (RCS)

Search Result 191, Processing Time 0.03 seconds

Radar Target Recognition Using a Fusion of Monostatic/Bistatic ISAR Images (모노스태틱/바이스태틱 ISAR 영상 융합을 통한 표적식별 연구)

  • Cha, Sang-Bin;Yoon, Se-Won;Hwang, Seok-Hyun;Kim, Min;Jung, Joo-Ho;Lim, Jin-Hwan;Park, Sang-Hong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.93-100
    • /
    • 2018
  • Inverse Synthetic Aperture Radar(ISAR) image is 2-dimensional radar cross section distributions of a target. For target approaching along radar's line of sight(LOS), the bistatic ISAR can compensate for the weakness of the monostatic ISAR which can not obtain the vertical resolution of the image. However, bistatic ISAR have longer processing times and variability in scattering mechanisms than monostatic ISAR, so target identification using only bistatic ISAR images can be inefficient. Therefore, this paper analyzes target identification performance using monostatic and bistatic ISAR images of targets approaching along radar's LOS and proposes a method of target identification through fusion of two radars. Simulation results demonstrate that identification performance through fusion is more efficient than identification performance using only monostatic, bistatic ISAR images.

Measurement and Analysis for Radar Glint Effect of Maritime Target (해상표적에 대한 레이더 Glint 영향 측정 및 분석)

  • Kim, Eunil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.521-530
    • /
    • 2014
  • In this paper, the glint effect of maritime target to a radar system was analyzed by simulation and field test with a barge and corner reflectors. From the experiment, we proposed a glint measurement method of a real maritime target and it was indicated that the glint effect between the simulation results and real measurement is similar. Also it was founded that the glint effect is related to the relative amount of RCS(Radar Cross Section) difference among major scattering point and minor scattering points. Finally, the experiment showed the glint effects of the rotating barge with some different combinations of scattering points.

A Study on Effective Identification of Targets Flying in Formation ISAR Images (ISAR 영상을 이용한 효과적인 편대비행 표적식별 연구)

  • Cha, Sang-Bin;Choi, In-Oh;Jung, Joo-Ho;Park, Sang-Hong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • Monostatic/Bistatic inverse synthetic aperture radar (ISAR) images are two-dimensional radar cross section (RCS) distributions of a target. When there are many targets in a single radar beam, ISAR images are generated with targets overlapped, so it is difficult to perform the targets identification using the trained database. In addition, it is inefficient to perform target identification using only single monostatic and bistatic ISAR images separately because each method has its own advantages and weaknesses. Therefore, this paper analyzes multiple targets identification performances using monostatic/bistatic ISAR images and proposes a method of identification through fusion of two ISAR images. To identify multiple targets, we use image combination technique using trained single target images. Simulation results show effectiveness of proposed method.

X-band RADAR Reflected Signal Measurement of Gallium-based Liquid Metal (갈륨에 기초한 액체금속 X밴드 레이더 반사신호 측정)

  • Minhyeok Kim;Sehyeok Kang;Seok-Joo Doo;Daeyoung Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.246-251
    • /
    • 2023
  • RADAR(Radio Detection and Ranging) is an important system for surveillance and reconnaissance by detecting a reflected signal which obtains the range from the radar to the target, and the velocity of the target. The magnitude of the reflected signal varies due to the radar cross section of the target, characteristic of the transmission and reception antenna, distance between the radar and the target, and power and wavelength of the transmitted signal. Thus, the RCS is the important characteristic of the target to determine if the target can be observed by the RADAR system. It is based on the material and shape of the target. We have measured the reflection signal of a simple square-shaped (20 × 20 cm) target made of a new material, a gallium-based liquid metal alloy and compared that of well-known metals including copper, aluminum. The magnitude of reflected signal of the aluminum target was the largest and it was 2.4 times larger than that of the liquid metal target. We also investigated the effect of the shape by measuring reflectance of the F-22 3D model(~1/95 ratio) target covered with/without copper, aluminium, and liquid metal. The largest magnitude of the reflected signal measured from side-view with the copper-covered F-22 model was 2.6 times greater than that of liquid metal. The reflectance study of the liquid metal would be helpful for liquid metal-based frequency selective surface or metamaterials.

A Study on the RCS Analysis and Reduction Method of Unmanned Surface Vehicles (무인수상정의 RCS 해석 및 감소 방법에 대한 연구)

  • Han, Min-Seok;Ryu, Jae-Kwan;Hong, Soon-Kook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.425-433
    • /
    • 2019
  • In this paper, the RCS analysis of the 10m unmanned surface vehicles was performed, and the factors of RCS increase were analyzed. Modeling techniques by transforming a geometric shape can reduce the RCS area, which can be used to develop stealth unmanned surface vehicles. In order to reduce the RCS, the existing Top Mast part was moved 1m to the tail part, the 5 degree tilt angle was moved below 0.5 m, and additional guided walls were installed to minimize the influence on the center and surrounding corner reflecting structures. As a result of comparing and analyzing the RCS analysis value with the existing model, it can be seen that the reduced countermeasure model is -3.79 dB lower than the existing model for all elevations. In particular, it can be seen that the strong scattering phenomenon is substantially removed in the region except the sacrificial angle region. In addition, it can be seen that in the case of -5m to 2m where the guide wall is added, the reflected signal is improved up to 20 to 40 dB or more, so that it does not appear on the 2D ISAR image. RCS analysis of unmanned surface vehicles explained the process of analyzing and identifying problem location through distance profile analysis and ISAR image analysis.

Modified Finite Volume Time Domain Method for Efficient Prediction of Radar Cross Section at High Frequencies

  • Chatterjee, Avijit;Myong, Rho-Shin
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.100-109
    • /
    • 2008
  • The finite volume time domain(FVTD) technique faces serious limitations in simulating electromagnetic scattering at high frequencies due to requirements related to discretization. A modified FVTD method is proposed for electrically large, perfectly conducting scatterers by partially incorporating a time-domain physical optics(PO) approximation for the surface current. Dominant specular returns in the modified FVTD method are modeled using a PO approximation of the surface current allowing for a much coarser discretization at high electrical sizes compared to the original FVTD scheme. This coarse discretization can be based on the minimum surface resolution required for a satisfactory numerical evaluation of the PO integral for the scattered far-field. Non-uniform discretization and spatial accuracy can also be used in the context of the modified FVTD method. The modified FVTD method is aimed at simulating electromagnetic scattering from geometries containing long smooth illuminated sections with respect to the incident wave. The computational efficiency of the modified FVTD method for higher electrical sizes are shown by solving two-dimensional test cases involving electromagnetic scattering from a circular cylinder and a symmetric airfoil.

Integrated survivability assessment given multiple penetration hits (다중 관통 피격에 따른 함정 통합 생존성 분석 절차)

  • Kim, Kwang-Sik;Lee, Jang-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.69-76
    • /
    • 2014
  • Survivability assessments and vulnerability reductions are required in warship design. A warship's survivability is assessed by its susceptibility, vulnerability, and recoverability. In this paper, an integrated survivability assessment for a warship subjected to multiple hits is introduced. The methodology aims at integrating a survivability assessment into an early stage of warship design. The hull surface is idealized using typical geometries for RCS (Radar Cross Section) detection probability and susceptibility. The Vulnerability is evaluated by using the shot-line. The recoverability is estimated using a survival time analysis. This enables the variation of survivability to be assessed. Several parameters may be varied to determine their effects on the survivability. The susceptibility is assessed by the probability of detecting the radar cross section of the subject and the probability of being hit based on a probability density function. The vulnerability is assessed by the kill probability based on the vulnerable area of critical components, according to the component's layout and redundancy. Recoverability is assessed by the recovery time for damaged critical components.

Design of a Full Polarimetric Scatterometer for X-Band (X-밴드용 완전 편파 Scatterometer 설계)

  • Hwang, Ji-Hwan;Lee, Kyung-Yup;Park, Seong-Min;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1308-1315
    • /
    • 2009
  • A full-polarimetric scatterometer(HPS: Hongik Polarimetric Scatterometer) for X-band is designed, fabricated, and verified using the theoretically well-known point-targets in this paper. The X-band full-polarimetric scatterometer consists of an OMT(Orthogonal-Mode Transducer)+horn antenna, the angle control part for the OMT+horn antenna, a transmitter/receiver with a network analyzer and a frequency-conversion circuitry, and a movable support of these parts. We use an inclinometer sensor to control the vertical and horizontal incidence angles. The full polarimetric data can be obtained because of the polarization switches and the OMT. The accuracy of the scatterometer system is verified by measuring the polarimetric RCS(Radar Cross Section) of one of the theoretically well-known point-targets, i.e., a corner reflector.

Design of Chipless RFID Tags Using Electric Field-Coupled Inductive-Capacitive Resonators (전계-결합 유도-용량성 공진기를 이용한 Chipless RFID 태그 설계)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.530-535
    • /
    • 2021
  • In this paper, the design method for a chipless RFID tag using ELC resonators is proposed. A four-bit chipless RFID tag is designed in a two by two array configuration using three ELC resonators with different resonant peak frequencies and one compact IDC resonator. The resonant peak frequency of the bistatic RCS for the IDC resonator is 3.125 GHz, whereas those of the three ELC resonators are adjusted to be at 4.225 GHz, 4.825 GHz, and 5.240 GHz, respectively, by using the gap between the capacitor-shaped strips in the ELC resonator. The spacing between the resonators is 1 mm. Proposed four-bit tag is fabricated on an RF-301 substrate with dimensions of 50 mm×20 mm and a thickness of 0.8 mm. It is observed from experiment results that the resonant peak frequencies of the fabricated four-bit chipless RFID tag are 3.290 GHz, 4.295 GHz, 4.835 GHz, and 5.230 GHz, respectively, which is similar to the simulation results with errors in the range between -2.3% and 0.2%.

Design and Fabrication of Miniaturized Chipless RFID Tag Using Modified Bent H-shaped Slot (변형된 구부러진 H-모양 슬롯을 이용한 소형 Chipless RFID 태그 설계 및 제작)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.815-820
    • /
    • 2023
  • In this paper, the design method of a miniaturized chipless RFID tag using a modified bent H-shaped slot was proposed. The proposed modified bent H-shaped slot was appended on the rectangular conductor plate printed on one side of a 20 mm × 50 mm FR4 substrate with a thickness of 0.8 mm. The resonant dip frequency of the bistatic RCS for the proposed modified bent H-shaped slot was compared with the cases when the H-shaped, U-shaped slot, and bent H-shaped slots were added, respectively, on the conductor plate. The simulated resonant dip frequencies for H-shaped, U-shaped, and bent H-shaped slots were 5.907 GHz, 4.918 GHz, and 4.364 GHz, respectively. When the proposed modified bent H-shaped slot was added, the resonant dip frequency was decreased to 3.741 GHz, and, therefore, the slot length was reduced by 36.7% compared to the H-shaped slot case. Experiment results show that the resonant dip frequency of the fabricated modified bent H-shaped slot was 3.9 GHz.