• Title/Summary/Keyword: Radar cross section (RCS)

Search Result 191, Processing Time 0.026 seconds

Investigation of the Finite Planar Frequency Selective Surface with Defect Patterns

  • Hong, Ic-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1360-1364
    • /
    • 2014
  • In this paper, RCS characteristics on defect pattern of crossed dipole slot FSS having a finite size have been analyzed. To analyze RCS, we applied the electric field integral equation analysis which applies BiCGSTab algorithm with iterative method and uses RWG basis function. To verify the validity of this paper, RCS of PEC sphere has been compared to the theoretical results and FSSs with defect patterns are fabricated and measured. As defect patterns in FSS, missing one column, missing some elements, and discontinuity in surfaces are simulated and compared with the measurement results. Resonant frequency shifts in pass band and changes in bandwidth are observed. From the results, precisely predicting and designing frequency characteristics over defect patterns are essential when applying FSS structures such as FSS radomes.

An Integrated System for Aerodynamic, Structural, and RF Stealth Analysis of Flying Vehicles (비행체 공력-구조-RF 스텔스 통합해석 시스템에 관한 연구)

  • Park, Min-Ju;Lee, Dong-Ho;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.86-91
    • /
    • 2008
  • An integrated multidisciplinary analysis and design system plays a critical role in the preliminary design of an aircraft. In this work a system based on the CATIA is developed for multidisciplinary computational design; aerodynamics, elasticity, and radar frequency stealth. Common data base of geometry and rectangular grids is generated and used for aerodynamic and structural analysis, while derivative triangular grids are generated for the RCS calculation. The panel method (PANAIR), FEM (NASTRAN), and PO technique are used for aerodynamic, structural, and RF stealth computations, respectively, and several additional algorithms are developed for the effective communication of the common data.

RCS Analysis of Complex Structures Using Object Precision Method (Object Precision 방법을 이용한 복합 구조물의 RCS 해석)

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.159-164
    • /
    • 2005
  • Monostatic RCS analysis of complex structures has been done with a combined method of physical and geometric optics, commonly applied to high frequency electromagnetic backscattering problems. In the analysis, the complex structure is modeled as a number of flat surfaces and the RCS of whole structure is calculated by summing RCS of each surface, which can be obtained from an analytical solution of flat surface phase integral derived from physical optics. The reflected and hidden surfaces are searched by an object precision method based on adaptive triangular beam method, which can take account for effects of multiple reflections and polarizations of electromagnetic wave. The validity of the presented RCS analysis method has been verified by comparing with exact solutions and measured data for various structures.

Application of Transformation Electromagnetics to Cloak Design and Reduction of Radar Cross Section

  • Mittra, Raj;Zhou, Yuda
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • In this paper we present an alternative approach to addressing the problem of designing cloaks for radar targets, which have been dealt with in the past by using the transformation optics (TO) algorithm. The present design utilizes realistic materials, which can be fabricated in the laboratory, and are wideband as well as relatively insensitive to polarization and incident angle of the incoming wave. The design strategy, presented herein, circumvents the need to use metamaterials for cloak designs that are inherently narrowband, dispersive and highly sensitive to polarization and incident angle. A new interpretation of the TO algorithm is presented and is employed for the design of radar cross section-reducing absorbers for arbitrary targets, and not just for canonical shapes, e.g., cylinders. The topic of performance enhancement of the absorbers by using graphene materials and embedded frequency structure surfaces is briefly mentioned. The design procedure for planar absorbing covers is presented and their performance as wrappers of general objects is discussed. A number of test cases are included as examples to illustrate the application of the proposed design methodology, which is a modification of the classical TO paradigm.

Analysis of the Radar Cross Section of an X-band Active Transponder (X-밴드 대역 능동 전파반사기 RCS 분석 연구)

  • Hwang, Ji-Hwan;Kwon, Soon-Gu;Won, Joong-Sun;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.327-335
    • /
    • 2011
  • A study on the RCS of a self-manufactured active transponder, which has a manually adjustable RCS, for SAR(Synthetic Aperture Radar) external calibration and image analysis at X-band is presented in this paper. The RCS of the active transponder was comparably analyzed using the lab-test and the COSMO-SkyMed SAR system, and also precisely analyzed the difference between the adjusted and estimated RCSs. A maximum RCS of the designed and manufactured active transponder is 60 dBsm. The active transponders with 60 dBsm and the adjusted RCS of 40 dBsm were measured using the single target calibration technique(STCT) and 2D target scanning technique(2DTST). And the extracted RCS using power-spill integration technique in a SAR image was compared with the measured RCS of active transponder. The comparison results show that the measured and extracted RCSs are 59.7 dBsm, 40.2 dBsm and 57.3 dBsm, 39.2 dBsm, respectively.

Position Estimation of a Missile Using Three High-Resolution Range Profiles (3개의 고 분해능 거리 프로파일을 이용한 유도탄의 위치 추정)

  • Yang, Jae-Won;Ryu, Chung-Ho;Lee, Dong-Ju
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.532-539
    • /
    • 2018
  • A position estimation technique is presented for a missile using high-resolution range profiles obtained by three wideband radars. Radar measures a target range using a reflected signal from the surface of a missile. However, it is difficult to obtain the range between the radar and the origin of the missile. For this reason, the interior angle between the moving missile and tracking radar is calculated, and a compensated range between surface of the missile and its origin is added to the tracking range of the radar. Therefore, position estimation of a missile can be achieved by using three total ranges from each radar to the origin of the missile. To verify the position estimation of the missile, electromagnetic numerical analysis software was used to prove the compensated range according to the flight position. Moreover, a wideband radar operating at 500-MHz bandwidth was applied, and its range profile was used for the position estimation of a missile.

A Study on the Performance Enhancement of Radar Target Classification Using the Two-Level Feature Vector Fusion Method

  • Kim, In-Ha;Choi, In-Sik;Chae, Dae-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.206-211
    • /
    • 2018
  • In this paper, we proposed a two-level feature vector fusion technique to improve the performance of target classification. The proposed method combines feature vectors of the early-time region and late-time region in the first-level fusion. In the second-level fusion, we combine the monostatic and bistatic features obtained in the first level. The radar cross section (RCS) of the 3D full-scale model is obtained using the electromagnetic analysis tool FEKO, and then, the feature vector of the target is extracted from it. The feature vector based on the waveform structure is used as the feature vector of the early-time region, while the resonance frequency extracted using the evolutionary programming-based CLEAN algorithm is used as the feature vector of the late-time region. The study results show that the two-level fusion method is better than the one-level fusion method.

Classification of the Front Body of a Missile and Debris in Boosting Part Separation Phase Using Periodic and Statistical Properties of Dynamic RCS (동적 RCS의 주기성과 통계적 특성을 이용한 기두부와 단 분리 시 조각들의 구분)

  • Choi, Young-Jae;Choi, In-Sik;Shin, Jinwoo;Chung, Myungsoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.540-549
    • /
    • 2018
  • Classifying the front body of the missile and debris of a high-speed missile in intercepting a high-speed missile is an important issue. The motion of the front body of the missile is characterized by precession, but the motion of the debris in the boosting part separation phase is characterized by tumbling. There are periodic patterns caused by the precession or tumbling motion on the dynamic radar cross section (RCS). In addition, there are statistical properties caused by the change pattern of the dynamic RCS. A method is proposed to classify the front body of the missile and debris using periodic and statistical properties of the dynamic RCS. Three kinds of feature vector are extracted from the periodic and statistical properties of the dynamic RCS. The front body of the missiles and debris was classified using a support vector machine.

A RCS investigation of Multiple Chaff clouds using Probability Distribution Characteristics (확률분포를 이용한 다중 채프의 RCS 특성 분석)

  • Chae, Gyoo-Soo;Lim, Joong-Soo;Kim, Young-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.2
    • /
    • pp.37-42
    • /
    • 2017
  • In order to estimate chaff RCS, we suggest here a novel method using the probability distribution. Normally, a chaff is assumed that it is a thin dipole antenna and the RCS can be calculated by the scattering wave theory. Most of the theoretical methods presented were mainly focusing on a single chaff cloud. In this paper, the RCS calculation was done for two or more chaff clouds and the changes of RCS with azimuth angle were observed. Matlab was used for presenting the probability distribution of chaff clouds and RCS calculation. A more accurate RCS estimation method is suggested by estimating the number of chaffs except the blocked elements.

Development of Mobile Active Transponder for KOMPSAT-5 SAR Image Calibration and Validation (다목적실용위성 5호의 SAR 영상 검·보정을 위한 이동형 능동 트랜스폰더 개발)

  • Park, Durk-Jong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1128-1139
    • /
    • 2013
  • KOMPSAT-5(KOrea Multi-Purpose SATellite-5) has a benefit of continuously conducting its mission in all weather and even night by loading SAR(Synthetic Aperture Radar) payload, which is different from optical sensor of KOMPSAT-2 satellite. During IOT(In-Orbit Test) periods, SAR image calibration should be conducted through ground target of which location and RCS is pre-determined. Differently from the conventional corner reflector, active transponder has a capability to change its internal transfer gain and delay, which allows active transponder to be shown in a pixel of SAR image with very high radiance and virtual location. In this paper, the development of active transponder is presented from design to I&T(Integration and Test).