• Title/Summary/Keyword: Radar Targets

Search Result 302, Processing Time 0.029 seconds

Take-Over Time Determination for High-Velocity Targets in a Multiple Radar System (다중 레이다 시스템의 고속표적 인계 시점 결정기법 연구)

  • Park, Soon-Seo;Jang, Dae-Sung;Choi, Han-Lim;Kim, Eun-Hee;Sun, Woong;Lee, Jong-Hyun;Yoo, Dong-Gil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.307-316
    • /
    • 2016
  • A multiple radar system is comprised of early warning radar for fast detection of a target and air defense radar for precision intercept. For this reason, target take-over process is required between the two radars. The target take-over should be performed at an appropriate time by consideration of stable tracking and effective fire control. In this paper, operation characteristics of multiple radar system are analyzed and target take-over time determination method using estimation of target tracking performance is proposed for high-velocity targets. The proposed method is validated with ballistic target defense scenarios in the developed integrated simulator.

Comparisons of ISAR Imaging Methods for Maritime Targets with Real Measured Radar Data (해상 표적의 실제 레이다 측정 데이터를 이용한 ISAR 영상 형성 기법 성능 비교)

  • Kang, Byung-Soo;Lee, Myung-Jun;Ryu, Bo-Hyun;Baek, Jin-Hyeok;Kim, Chan-Hong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.740-748
    • /
    • 2017
  • In this paper, we compared performance of conventional inverse synthetic aperture radar(ISAR) imaging methods for maritime target with real data measured by X-band radar. Following conventional approaches were used for performance comparisons: 1) range instantaneous Doppler(RID) method, 2) range Doppler(RD) processing with phase adjustment, and 3) RD processing with prominent point processing(PPP). It is noteworthy that the comparison results have significance of providing basic concept to establish ISAR imaging frame work for maritime targets.

AUTOMATIC DETECTION OF TARGETS IN SAR IMAGES

  • Hur, Dong-Seok;Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.516-519
    • /
    • 2006
  • Military targets in SAR images are not distinguished easily unlike those in optical images, because targets are only dozens of pixels and they have many corner reflectors sensitive to the incidence angle of radar signals. Due to those problems, SAR image analysts have difficulties in recognizing military targets captured by SAR images. Furthermore, manual analysis cannot respond promptly enough to rapidly changing situations such as battle field. We need automated analysis to solve these problems. In this paper, we analyzed algorithms for prescreening of military targets in SAR images. We implemented some prescreening algorithms and tested the algorithms using SAR data. As a result, we will report performance of the tested prescreening algorithms.

  • PDF

The Study on Coordinate Transformation of the Tracking Radar in NARO Space Center (나로우주센터 추적레이더의 좌표 변환에 관한 연구)

  • Shin, Han-Seop;Choi, Jee-Hwan;Kim, Dae-Oh;Kim, Tae-Hyung
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.116-121
    • /
    • 2011
  • The tracking radar systems in NARO space center are used in order to acquire the TSPI (Time, Space, and Position Information) data of the launch vehicle. The tracking radar produce the measurements of tracked targets in the radar-centered coordinate system. When the tracking radar is in the Cartesian/Polar tracking mode, the state vector data is sent in radar-centered Cartesian/Polar coordinate system to RCC. RCC also send the slaving data in Test Range coordinate system to the tracking radar. So, the tracking radars have to transform the slaving data in Test Range coordinate system into in radar-centered coordinate system. In this study, we described the coordinate transformation between radar-centered coordinate system and Test Range coordinated system.

Study on the Optimal Deployment of the Passive Radar System for Detecting Small Unmanned Aerial Vehicles (소형 무인기 탐지를 위한 패시브 레이더망 최적 배치 연구)

  • Baek, Inseon;Lee, Taesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.443-452
    • /
    • 2016
  • Current low-altitude radar system often fails to detect small unmanned aerial vehicles (UAV) because of their small radar cross section (RCS) compared with larger targets. As a potential alternative, a passive bistatic radar system has been considered. We study an optimal deployment problem for the passive bistatic radar system. We model this problem as a covering problem, and develop an integer programming model. The objective of the model is to maximize coverage of a passive bistatic radar system. Our model takes into account factors specific to a bistatic radar system, including bistatic RCS and transmitter-receiver pair coverage. Considering bistatic RCS instead of constant RCS is important because the slight difference of RCS value for small UAVs could significantly influence the detection probability. The paired radar coverage is defined by using the concept of gradual coverage and cooperative coverage to represent a realistic environment.

Development of Data Logging Platform of Multiple Commercial Radars for Sensor Fusion With AVM Cameras (AVM 카메라와 융합을 위한 다중 상용 레이더 데이터 획득 플랫폼 개발)

  • Jin, Youngseok;Jeon, Hyeongcheol;Shin, Young-Nam;Hyun, Eugin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.4
    • /
    • pp.169-178
    • /
    • 2018
  • Currently, various sensors have been used for advanced driver assistance systems. In order to overcome the limitations of individual sensors, sensor fusion has recently attracted the attention in the field of intelligence vehicles. Thus, vision and radar based sensor fusion has become a popular concept. The typical method of sensor fusion involves vision sensor that recognizes targets based on ROIs (Regions Of Interest) generated by radar sensors. Especially, because AVM (Around View Monitor) cameras due to their wide-angle lenses have limitations of detection performance over near distance and around the edges of the angle of view, for high performance of sensor fusion using AVM cameras and radar sensors the exact ROI extraction of the radar sensor is very important. In order to resolve this problem, we proposed a sensor fusion scheme based on commercial radar modules of the vendor Delphi. First, we configured multiple radar data logging systems together with AVM cameras. We also designed radar post-processing algorithms to extract the exact ROIs. Finally, using the developed hardware and software platforms, we verified the post-data processing algorithm under indoor and outdoor environments.

Design and Fabrication of a W-band FMCW Radar for the Metal Target Detection Under the Ground Clutter Environment (지면 클러터 환경에서 금속표적감지를 위한 W-대역 FMCW 레이더의 설계 및 제작)

  • Park Jung-Dong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.93-100
    • /
    • 2004
  • In this paper, we describe the design, fabrication, and test results of a W-band FMCW radar for the metal target detection under the ground clutter environment. In order to detect metal targets on the ground, we used a single cassegrain antenna with the beamwidth of $1.45^{\circ}$ which forms pencil-beam footprint on the ground. A log envelope detector was applied to improve radar performance in the severe ground clutter known as Weibull and log normal clutter. The designed FMCW radar can acquire altitude information from the ground clutter with $\sigma_0=-23dB$ at the height of 160m. The fabricated W-band FMCW radar transmits 11 dBm power and the dynamic range of the receiver is from -106dBm to -30dBm. The performances of the fabricated sensors were tested out in the fields and detected a car target of 200m apart on the grass.

Implementation of Real-Time Data Logging System for Radar Algorithm Analysis (레이다 알고리즘 분석을 위한 실시간 로깅 시스템 구현)

  • Jin, YoungSeok;Hyun, Eugin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.253-258
    • /
    • 2021
  • In this paper, we developed a hardware and software platform of the real-time data logging system to verify radar FEM (Front-end Module) and signal-processing algorithms. We developed a hardware platform based on FPGA (Field Programmable Gate Array) and DSP (Digital Signal Processor) and implemented firmware software to verify the various FEMs. Moreover, we designed PC based software platform to control radar logging parameters and save radar data. The developed platform was verified using 24 GHz multiple channel FMCW (Frequency Modulated Continuous Wave) in an environment of stationary and moving targets of chamber room.

ISAR IMAGING FROM TARGET CAD MODELS

  • Yoo, Ji-Hee;Kwon, Kyung-Il
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.550-553
    • /
    • 2005
  • To acquire radar target signature, various kinds of target are necessary. Measurement is one of the data acquiring method, but much time and high cost is required to get the target data from the real targets. Even if we can afford that, the targets we can access are very limited. To obtain target signatures avoiding these problems, we build the target CAD (Computer Aided Design) model for the calculation of target signatures. To speed up RCS calculation, we applied adaptive super-sampling and tested quite complex tank CAD model which is 1.4 hundred of thousands facet. We use calculated RCS data for ID range profile and 2D ISAR (Inverse Synthetic Aperture Radar) image formation. We adopted IFFT (Inverse Fast Fourier Transform) algorithm combined with polar formatting algorithm for the ISAR imaging. We could confirm the possibility of the construction of database from the images of CAD models for target classification applications.

  • PDF

Performance Analysis of Detector in Automobile Pulse Radar with Considering Interference (차량용 펄스 레이더에서 간섭영향에 대한 검출기의 성능 분석)

  • Lee, Jonghun;Ko, Seokjun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2019
  • In this paper, we consider interferences from other automobile pulse radars using same frequency spectrum. In order to eliminate the interference, we propose the PN code modulation method. This method uses the cross-correlation between PN codes with different seed. The ROC performance is used for comparing the proposed detector to conventional method. And the proposed detector can decide the present or absent of targets and measure the range of the targets by using memory buffer of range gate. Especially, we use false alarm probability for all range gates. That is the false alarm if in any one range gate the false alarm occurs. From the simulation result, we can see that the proposed detector with using PN code is not influenced by interferences.