• Title/Summary/Keyword: Radar Targets

Search Result 302, Processing Time 0.024 seconds

A Study on Accuracy Improvement for Range and Velocity Estimates in a FM-CW Radar (FM-CW 레이다에서의 거리 및 속도 추정 정확도 향상에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1752-1758
    • /
    • 2010
  • A FM-CW radar is used for the various purposes as a remote sensing device since it has the advantages of the relatively simple implementation and the low probability of signal interception. A FM-CW radar uses the same frequency modulated continuous wave for both transmission and demodulation. Therefore, the received beat frequency represents the range and Doppler information of targets. However, using the conventional FFT method, the degree of accuracy and resolution in the spectrum estimation can be seriously degraded in the detection and tracking of fast moving targets because of the short dwell time. Therefore, in this paper, the model parameter estimation methods called as an autoregressive method is applied to overcome these problems and showed that the improved accuracy and resolution can be obtained for the target range and velocity estimation.

Separation of Dynamic RCS using Hough Transform in Multi-target Environment (허프 변환을 이용한 다표적 환경에서 동적 RCS 분리)

  • Kim, Yu-Jin;Choi, Young-Jae;Choi, In-Sik
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.9
    • /
    • pp.91-97
    • /
    • 2019
  • When a radar tracks the warhead of a ballistic missile, decoys of a ballistic missile put a heavy burden on the radar resource management tracking the targets. To reduce this burden, it is necessary to be able to separate the signal of the warhead from the received dynamic radar cross section (RCS) signal on the radar. In this paper, we propose the method of separating the dynamic RCS of each target from the received signal by the Hough transform which extracts straight lines from the image. The micro motion of the targets was implemented using a 3D CAD model of the warhead and decoys. Then, we calculated the dynamic RCS from the 3D CAD model having micromotion and verified the performance by applying the proposed algorithm. Simulation results show that the proposed method can separate the signals of the warhead and decoys at the signal-to-noise ratio (SNR) of 10dB.

A study on the datalink Interface between fighter jet RADAR and BVR AA guided missile (전투기 레이다의 시계 외 중거리 공대공 유도탄 데이터링크 연동방안 연구)

  • Yong-min Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.453-456
    • /
    • 2023
  • Fighter jets employ guided missiles equipped with seekers to counter enemy air threats. Short range guided missiles(SRM) usually carry infrared(IR) seekers and are used to engage targets within visual range. On the other hand, medium range guided missiles(MRM) often utilize radio frequency(RF) seekers to engage targets beyond visual range. Medium range guided missiles do not activate their seekers until they reach the detection range of the seeker, and the aircraft's radar guides them for a certain distance. This guidance method is called Missile Data Link(MDL), and it can be implemented in either one-way or two-way communication modes, depending on the missile's communication system. In this paper, we discuss MDL based on these two communication modes, along with the integration of RADAR, mission computers, and guided missiles.

LFM Radar Implemented in SDR Architecture (SDR 기반의 LFM 레이다 설계 및 구현)

  • Yoon, Jae-Hyuk;Yoo, Seung-Oh;Lee, Dong-Ju;Ye, Sung-Hyuck
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.308-315
    • /
    • 2018
  • In this paper, we present the basic design results for high-resolution radar development at S-band frequency that can precisely measure the miss distance between two targets. The basic system requirement is proposed for the design of a 3.5 GHz linear frequency-modulated (LFM) radar with maximum detection distance and distance resolution of 2 km and 1 m, respectively, and the specifications of each module are determined using the radar equation. Our calculations revealed a signal-to-noise ratio ${\geq}30dB$ with a bandwidth of 150 MHz, transmission power of 43 dBm for the power amplifier, gain of 26 dBi for the antenna, noise figure of 8 dB, and radar cross-section of $1m^2$ at a target distance of 2 km from the radar. Based on the calculation results and the theory and method of LFM radar design, the hardware was designed using software defined radar technology. The results of the subsequent field test are presented that prove that the designed radar system satisfies the requirements.

Development of Infrared Target for Dual-Sensor Imaging Seeker's Test and Evaluation in HILS System (이종센서 영상탐색기 시험평가를 위한 적외선 표적원 개발)

  • Park, Changhan;Song, Sungchan;Jung, Sangwoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.898-905
    • /
    • 2018
  • In this work, infrared targets for a developed hardware-in-the-loop simulation(HILS) system are proposed for a performance test of a dual-sensor imaging seeker equipped with an infrared and a visible sensor that can lock and track for ground and air targets. This integrated system is composed of 100 modules of heat and light sources to simulate various kinds of target and the trajectory of moving targets based on scenarios. It is possible to simulate not only the position, velocity, and direction for these targets but also background clutter and jamming environments. The design and measurement results of an infrared target, such as the HILS system configuration, developed for testing and evaluation of a dual-sensor imaging seeker are described. In the future, it is planned to test the lock-on and tracking performance of an imaging seeker equipped with single or dual sensors dynamically in real time based on a simulation flight scenario in the developed HILS system.

Hybrid Compensation Technique on Low Elevation Angle Errors for Multibeam Surveillance Radar in Multipath Environment (다중경로 환경에서 다중빔 탐색레이더에 적용 가능한 표적 고각오차 혼성 보정 기법)

  • Kim, Kwan Sung;Chung, Myung Soo;Jung, Chang Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.365-372
    • /
    • 2013
  • The multibeam surveillance radar is a state-of-art of 3D radar technology. It applies the stacked beams realized by a digital beamformer. In this paper, a hybrid compensation technique on elevation angle errors for low elevation angle targets over the sea in multipath radar environments is proposed. The proposed method can be applied to stacked beam radars. Double null algorithm based on maximum likelihood method in 3-D beamspace domain works well unless the phase difference between the two rays(direct and specular path) is close to $0^{\circ}$ and the magnitude of reflection coefficient is close to 0. To overcome these problems, we propose a hybrid compensation technique which uses the selective double null algorithm and the beam-ratio compensation technique for low-elevation errors on a log scale. Results of computer simulation show that the proposed method outperform conventional monopulse method and double null algorithm only under various multipath environments.

Feasibility study of corner reflector for radar countermeasures and deception for conventional forces

  • Kang, Hee-Jin;Yang, Hyang-Kweon;Jo, Min-Chul;Kim, Kook-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.171-175
    • /
    • 2017
  • The high-tech large warships are minimal and they are always monitored by opponents, and become primary targets when conflicts occur. The improvement in reducing susceptibility has significant importance because it is difficult for a ship to maintain mission capability and functionality once it is damaged. Ordinary decoys are effective only under the premise that the ship has already been exposed. Traditionally, for naval vessels, techniques related to the radar have been used in military stealth techniques to ensure confidentiality. The corner reflector, on the other hand, can produce rather large radar cross sections. Continued use of deceptive systems such as chaff during operations will help to improve survivability of naval ships. From this viewpoint, corner reflector was considered for making radar countermeasures and deception technology. This paper reviews the current status of corner reflector basis decoys and the technical feasibility of corner reflectors for developing structural decoys.

Classification of Doppler Audio Signals for Moving Target Using Hidden Markov Model in Pulse Doppler Radar (펄스 도플러 레이더에서 HMM을 이용한 이동표적의 도플러 오디오 신호 식별)

  • Sim, Jae-Hun;Lee, Jung-Ho;Bae, Keun-Sung
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.624-629
    • /
    • 2018
  • Classification of moving targets in Pulse Doppler Radar(PDR) for surveillance and reconnaissance purposes is generally carried out based on listening and training experience of Doppler audio signals by radar operator. In this paper, we proposed the automatic classification method to identify the class of moving target with Doppler audio signals using the Mel Frequency Cepstral Coefficients(MFCC) and the Hidden Markov Model(HMM) algorithm which are widely used in speech recognition and the classification performance was analyzed and verified by simulations.

Track Initiation Algorithm Based on Weighted Score for TWS Radar Tracking (TWS 레이더 추적을 위한 가중 점수 기반 추적 초기화 알고리즘 연구)

  • Lee, Gyuejeong;Kwak, Nojun;Kwon, Jihoon;Yang, Eunjeong;Kim, Kwansung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • In this paper, we propose the track initiation algorithm based on the weighted score for TWS radar tracking. This algorithm utilizes radar velocity information to calculate the probabilistic track score and applies the Non-Maximum-Suppression(NMS) to confirm the targets to track. This approach is understood as a modification of a conventional track initiation algorithm in a probabilistic manner. Also, we additionally apply the weighted Hough transform to compensate a measurement error, and it helps to improve the track detection probability. We designed the simulator in order to demonstrate the performance of the proposed track initiation algorithm. The simulation result show that the proposed algorithm, which reduces about 40 % of a false track probability, is better than the conventional algorithm.

ECCM Design of Tracking Radar (추적 레이다의 대전자전 설계)

  • Hong-Rak Kim;Man-Hee Lee;Sung-Ho Park;Youn-Jin Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.51-57
    • /
    • 2024
  • The tracking radar system is a pulsed tracking system that searches, detects, and tracks targets in real time for ships operating in the ocean. Ships defend themselves through soft kill operations to confuse or deceive the tracking radar. Soft Kill operations include passive chaff and active noise jamming. This paper understands the basic concepts of electronic warfare and explains various deception systems in operation on ships. In addition, each deception The radar system design to respond to the system is explained.