• Title/Summary/Keyword: Radar Cross-Section

Search Result 246, Processing Time 0.018 seconds

Shaping Analysis to decide the Design Condition of a Passive-type Radar Reflector (수동형 레이더 리프렉터의 설계조건 결정을 위한 형상분석)

  • Yim, Wung-Bin;Kim, Woo-Suk
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.199-207
    • /
    • 2002
  • Radar Cross Sections(RCS) for the radar targets are measured and their performance characteristics are analyzed through computer simulation. In addition, constructional features for the commercial radar reflectors are investigated. Then, the optimum design condition of a passive-type radar reflector was chosen. The results show that the octahedral-type radar reflector with 10$\lambda$ sized circular plates has best performance in X-band($\lambda$=3.2cm). However, to comply with newly adopted 2000 SOLAS regulations, larger sized circular plate is required to provide at both X-band and S-band.

A Study on Enclosed Mast Characteristics for Radar Cross-Section Reduction (레이더반사면적 감소를 위한 폐위형 마스트 특성 연구)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Hwang, Joon-Tae;Jeong, Seung-Jin;Kim, Jong-Chul;Song, Jee-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.746-753
    • /
    • 2017
  • Radar Cross Section (RCS) is a factor directly related to survivability, and a design to reduce the presence of this factor is needed. The upper structure, guns, radar and so on are related to warship RCS, but radar RCS reduction is difficult because of complex shapes involved. In this paper, an enclosed mast, which is one modern method for reducing radar RCS, and the characteristics of an applied Frequency Selected Surface (FSS) are analyzed. The RCS reduction ability of an enclosed mast has been confirmed by comparing RCS analysis results for a general radar with that of an enclosed mast for available frequency according to FSS shape. The characteristics of the enclosed mast have also been studied by analyzing the elevation angle and slope of the mast. General radar RCS was high because of its complex shape, but low RCS was shown for the enclosed mast model, which had a simpler shape.

Designing Passive-Type Radar Reflector for Small Ship

  • Yim, Jeong-Bin;Kim, Woo-Suk;Ahn, Yoeng-Sub;Park, Sung-Hyeon;Jung, Jung-Sik;Lee, Kyu-Dong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.125-134
    • /
    • 2003
  • This paper describes on the design of Passive-type Radar Reflector for small Ship (PRR-S) based on the newly revised 2000 SOLAS regulations. The design idea, adopted in the study, is to hold PRR-S in the proper ‘catch rain’ position to avoid fluctuations of Radar Cross Section (RCS) due to ship's heeling. The PRR-S consists of octahedral-type radar reflector with circular plates and three-axis gimbaled stabilizer with weight on the bottom of outer gimbal ring. Performance test for the PRR is carried out in an anechoic chamber. The test results show that the reflected radar signal from PRR-S is more uniformly distributed than the reference model (Davis Echomaster).

  • PDF

Radar Target Recognition Using a Fusion of Monostatic/Bistatic ISAR Images (모노스태틱/바이스태틱 ISAR 영상 융합을 통한 표적식별 연구)

  • Cha, Sang-Bin;Yoon, Se-Won;Hwang, Seok-Hyun;Kim, Min;Jung, Joo-Ho;Lim, Jin-Hwan;Park, Sang-Hong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.93-100
    • /
    • 2018
  • Inverse Synthetic Aperture Radar(ISAR) image is 2-dimensional radar cross section distributions of a target. For target approaching along radar's line of sight(LOS), the bistatic ISAR can compensate for the weakness of the monostatic ISAR which can not obtain the vertical resolution of the image. However, bistatic ISAR have longer processing times and variability in scattering mechanisms than monostatic ISAR, so target identification using only bistatic ISAR images can be inefficient. Therefore, this paper analyzes target identification performance using monostatic and bistatic ISAR images of targets approaching along radar's LOS and proposes a method of target identification through fusion of two radars. Simulation results demonstrate that identification performance through fusion is more efficient than identification performance using only monostatic, bistatic ISAR images.

An Efficient Analysis of Unbounded Scattering Field Using Three Dimensional Boundary Element Method (3차원 경계요소법을 이용한 무경계 산란장의 효율적 해석)

  • 박동희;김정기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.3
    • /
    • pp.14-21
    • /
    • 1994
  • In this paper, a numerical method to be obtain the radar cross section(RCS) of three- dimensional bodies with arbitrary geometry and material compositions on the electromagnetic field with arbitrary incident angle is described. The RCS is obtained by solving the individual surface integral equation about multilayers scatterer using the three-dimensional bonudary element method(BEM). To show propriety and usefulness as to the three-dimensional BEM in this paper, the choice of a geometry is a multi-regular hexahedron and multi-right-angled hexahedron out of oblique incident electric field, and is considered to apply to every condition with loss sufficiently.

  • PDF

Analysis of Radar Cross Section of a Battleship Equipped with an Integrated Mast Module Based on PO and PTD

  • Shin, Hokeun;Lee, Seokgon;Park, Dongmin;Shin, Jinwoo;Chung, Myungsoo;Park, Sanghyun;Park, Yong Bae
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.238-240
    • /
    • 2017
  • In this paper, we analyze the radar cross section (RCS) of a battleship equipped with an integrated mast module (IMM). The RCS of a battleship equipped with an IMM is calculated based on physical optics (PO) and the physical theory of diffraction (PTD), and is analyzed in terms of the mast shape, incident angles, and polarization.

Stable Analysis of Electromagnetic Scattering from Arbitrarily Shaped Conductors Coated with a Dielectric Material (유전체로 코팅된 임의 형태 도체의 안정된 전자파 산란 해석)

  • 한상호;정백호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1225-1231
    • /
    • 2003
  • In this paper, we present the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional conducting objects coated with dielectric materials. The integral equation treated here is the combined field integral equation(CFIE). The objectives of this paper is to illustrate that only the CFIE formulation is a valid methodology in removing the interior resonance problem, which occurs at a frequency corresponding to an internal resonance of the structure. Numerical results of radar cross section for coated conducting structures are presented and compared with other available solutions.

An Analysis on the Reduction of Measurement Time Using Interpolation Algorithm in Near-field RCS Measurements for Aircraft Shape (항공기 형상에 대한 근전계 RCS 측정에서 내삽 알고리즘을 이용한 측정시간 단축에 대한 분석)

  • Park, Homin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.339-346
    • /
    • 2022
  • The importance of stealth technology is increasing in modern warfare, and Radar Cross Section(RCS) is widely used as an indicator of stealth technology. It is useful to measure RCS using an image-based near-field to far-field transformation algorithm in short-range monostatic conditions. However, the near-field measurement system requires a longer measurement time compared to other methods. In this work, it is proposed to reduce the measured data using an interpolation method in azimuth angular domain. The calculated far-field RCS values according to the sampling rate is shown, and the performance of the algorithm applied with interpolation in the angular domain is presented. It is shown that measurement samples can be reduced several times by using the redundancy in the angular domain while producing results similar to the conventional method.

A Study on the RCS Enhancement Method of Passive RADAR Reflector Through Shaping (형상을 통한 수동형 레이더 리프렉터의 RCS 증대방법 연구)

  • 임정빈;김우숙;안영섭;김인현;박성현;김창경;심영호;김봉석
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.161-176
    • /
    • 2002
  • Collision avoidance is the most important part of a small vessel. Small and mediurn sized ships are surprisingly poor targets for radar reflection and are frequently in danger of being overrun by large vessels, even under good condition of visibility. One of the best way to prevent collisions at sea is to use as large and well designed a radar reflector. Thus, RCS(Radar Cross Section) increase is key element in the design of radar reflector. Radar Reflectors are normally classified into active-type and passive-type. In this paper, the RCS increase methods for passive-type reflector through shaping are explained, and analyzed with RCS performance test by computer simulation. As results from analysis, It is shown that the effective diameter of radar reflector is over 10 λ to provide a return above the threshold RCS of 25m$^2$, lower limit of detectability using X-band radar in a moderate sea.

  • PDF

A Study on Radar Absorbing Structure for Aircraft (항공기용 전파흡수 구조 연구)

  • Han, Won-Jae;Jang, Byung-Wook;Park, Jung-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.3
    • /
    • pp.24-28
    • /
    • 2010
  • The purpose of this study is to define available microwave absorbing structure for aircraft from in the X-band(8.2~12.4GHz) frequencies. The electromagnetic wave absorption or shielding techniques is an important issue not only for military purpose but also for commercial purposes. Aircraft Radar Absorbing Structure(RAS) is absorbed or scattered propagation waves from the enemy radar. There are absorbing technologies at shaping design techniques and using Radar Absorbing Materials(RAM). RAM is more important because shaping design can't include perfect radar absorbing performance. In this study, based on material properties was introduced RAM and to analyze the each characteristics. Finally, we comparison appropriate RAM for aircraft.

  • PDF