• Title/Summary/Keyword: Rac1

Search Result 172, Processing Time 0.032 seconds

Rac1 inhibition protects the kidney against kidney ischemia/reperfusion through the inhibition of macrophage migration

  • You Ri Park;Min Jung Kong;Mi Ra Noh;Kwon Moo Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.257-265
    • /
    • 2023
  • Kidney ischemia/reperfusion (I/R) injury, a common cause of acute kidney injury (AKI), is associated with the migration of inflammatory cells into the kidney. Ras-related C3 botulinum toxin substrate 1 (Rac1), a member of the Rho family of small GTPase, plays an important role in inflammatory cell migration by cytoskeleton rearrangement. Here, we investigated the role of Rac1 on kidney I/R injury and macrophage migration. Male mice were subjected to either 25 min of bilateral ischemia followed by reperfusion (I/R) or a sham operation. Some mice were administrated with either NSC23766, an inhibitor of Rac1, or 0.9% NaCl (vehicle). Kidney damage and Rac1 activity and expression were measured. The migration and lamellipodia formation of RAW264.7 cells, mouse monocyte/macrophage, induced by monocyte chemoattractant protein-1 (MCP-1, a chemokine) were determined using transwell migration assay and phalloidin staining, respectively. In sham-operated kidneys, Rac1 was expressed in tubular cells and interstitial cells. In I/R-injured kidneys, Rac1 expression was decreased in tubule cells in correlation with the damage of tubular cells, whereas Rac1 expression increased in the interstitium in correlation with an increased population of F4/80 cells, monocytes/macrophages. I/R increased Rac1 activity without changing total Rac1 expression in the whole kidney lysates. NSC23766 administration blocked Rac1 activation and protected the kidney against I/R-induced kidney damage and interstitial F4/80 cell increase. NSC23766 suppressed monocyte MCP-1-induced lamellipodia and filopodia formation and migration of RAW 264.7 cells. These results indicate Rac1 inhibition protects the kidney against I/R via inhibition of monocytes/macrophages migration into the kidney.

Nuclear Rac1 regulates the bFGF-induced neurite outgrowth in PC12 cells

  • Kim, Eung-Gook;Shin, Eun-Young
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.617-622
    • /
    • 2013
  • Rac1 plays a key role in neurite outgrowth via reorganization of the actin cytoskeleton. The molecular mechanisms underlying Rac1-mediated actin dynamics in the cytosol and plasma membrane have been intensively studied, but the nuclear function of Rac1 in neurite outgrowth has not yet been addressed. Using subcellular fractionation and immunocytochemistry, we sought to explore the role of nuclear Rac1 in neurite outgrowth. bFGF, a strong agonist for neurite outgrowth in PC12 cells, stimulated the nuclear accumulation of an active form of Rac1. Rac1-PBR (Q) mutant, in which six basic residues in the polybasic region at the C-terminus were replaced by glutamine, didn't accumulate in the nucleus. In comparison with control cells, cells expressing this mutant form of Rac1 displayed a marked defect in extending neurites that was concomitant with reduced expression of MAP2 and MEK-1. These results suggest that Rac1 translocation to the nucleus functionally correlates with bFGF-induced neurite outgrowth.

Effects of Environmental Factors Such as Temperature and Salinity on Expression of Interleukin-1 Receptor Accessory Protein in the Red Seabream (Pagrus major) (온도 및 염분 등의 환경요인이 참돔(Pagrus major)의 Interleukin-1 Receptor Accessory Protein 발현에 미치는 영향)

  • Kang, Han Seung;Min, Byung Hwa
    • Journal of Marine Life Science
    • /
    • v.2 no.2
    • /
    • pp.70-74
    • /
    • 2017
  • Interleukin-1 (IL-1) is one of the proinflammatory cytokines, after IL-1 binds to IL-1RI, IL-1RacP (interleukin-1 receptor accessory protein) joins with IL-1/IL-1RI to form a complex, and leading to cell activation. IL-1RAcP is involved in immune response, stress and apoptosis. The purpose of this study was to investigate the gene expression of IL-1RAcP in red seabream (Pagrus major) exposure to low water temperature (8℃, 33 psu) and low salinity (20℃, 10 psu). Results showed that, the expression of IL-1RAcP was significantly increased in the experiment groups, such as low water temperature (8℃, 33 psu), and low salinity (20℃, 10 psu). These results suggest that IL-1RAcP was played roles in biomarker gene on the environmental stress such as low water temperature and low salinity.

Determining the Number of Risk Level Using Real-time Sensitivities in the Probabilistic Maritime Risk Evaluation (확률기반 해상위기평가에서 실시간 민감도를 이용한 위기수준의 단계 구분 수 결정에 관한 연구)

  • Gang, Sang-Guen
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.685-691
    • /
    • 2014
  • The result of probabilistic maritime risk evaluation is represented by the probability(P=0.0~1.0) These results are shown by an index using Risk Acceptance Criteria(RAC) to base the evaluation generally to know the risk level easily. Current RAC is divided into 3 steps, 5 steps, 7 steps, etc. Despite need to evaluate whether the number of RAC for risk evaluation is reasonable, there is not a related research yet. In this study, It was proposed the evaluation method to determine the optimum index number of RAC using the Sensitivity distribution characteristics and the Sensitivity by the index number of RAC. As application result from the proposed method for probabilistic risk evaluation data obtained from the prior studies, It could be determined the optimum index number of RAC by Sensitivity below 10 times and confirmed that the proposed method is reasonable by this study.

Chemical Reactivity between Ni(II)-Macrocycle Complex Ions ($NiL_m{^{2+}}$) and $CN^-$ (Ni(II)-거대고리 리간드 착이온 ($NiL_m{^{2+}}$) 과 $CN^-$ 이온간의 반응성)

  • Yu-Chul Park;Jong-Chul Byun
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.334-343
    • /
    • 1987
  • The Chemical reactions between $NiL_m{^{2+}}\{$Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;Ni(1[14]4-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{\beta}-Ni(rac-[14]-decane)^{2+},\;and\;Ni(meso-[14]-decane)^{2+}$}\and\ CN^-$ ion were studied by the spectrophotometric method. The equilibrium constants (K_1$) for the 1:1 complex ion, $[NiL_m(CN)]^+\;with\;NiL_m{^{2+}}\;and\;CN^-$ ion were determined in the range of 3 to $25^{\circ}C$. The $K_1\;for\;Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;Ni(1[14]4-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{beta}-Ni(rac-[14]-decane)^{2+},\;and\;Ni(meso-[14]-decane)^{2+}\;at\;15^{\circ}C$ was 4.7, 5.3, 6.2, 7.5, 9.4, and 9.8, respectively. The values of $K_1$ decreased with increasing temperature. From the temperature effect on equilibrium constant ($K_1$), thermodynamic parameters $({\Delta}H^{\circ},\;{\Delta}S^{\circ},\;{\Delta}G^{\circ})$ for reaction were evaluated and the reaction of $NiL_m{^{2+}}\;and\;CN^-$ ion was exothermic. $NiL_m{^{2+}\;reacts\;with\;CN^-$ ion to give $Ni(CN)_4{^{2-}}$ ion and macrocyclic ligand $(L_m)$. The kinetics of formation of the $Ni(CN)_4{^{2-}}$ ion of varying the $[CN^-],\;[HCN],\;and\;[OH^-]$ have been investigated at 3∼$25^{\circ}C\;and\;0.5M\;NaClO_4$. Maintaining a constant $[CN^-],\;k_{obs}/[CN^-]^2$ increases linearly with increasing [HCN]. In the presence of large quantities of $[OH^-],\;k_{obs}/[CN^-]^2$ also increases linearly with $[OH^-]$. From the temperature effect on kinetic constant (k_{obs})$, parameter of activation $({\Delta}H^{\neq},\;{\Delta}S^{\neq})$ of reaction of $NiL_m{^{2+}}\;with\;CN^-$ ion were determined. For the $Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{\beta}-Ni(rac-[14]-decane)^{2+},\;and\;Ni(meso-[14]-decane)^{2+}\;series\;{\Delta}H^{\neq}$ gradually decrease as the d-d transition energy, $ν(cm^{-1})$ decrease. And the reaction of the five $NiL_m{^{2+}}\;with\;CN^-$ ion take place by way of equal paths.

  • PDF

Characteristics of Copolymerization of Ethylene/1-Octene with rac-Me2Si(2-p-tolylindenyl)2ZrCl2 Catalyst (rac-Me2Si(2-p-tolylindenyl)2ZrCl2 촉매를 이용한 에틸렌/1-옥텐의 공중합 특성)

  • Ahn, Sung-Hyun;Park, Yeung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.516-521
    • /
    • 2007
  • The copolymerization characteristics of a newly-synthesized catalyst, $rac-Me_2Si(2-p-tolylindenyl)_2ZrCl_2$, and its analogue, $rac-Me_2Si(Ind)_2ZrCl_2$, were examined in the ethylene/1-octene copolymerization while varying the concentration of 1-octene in the reaction mixture. The activity of $rac-Me_2Si(2-p-tolylindenyl)_2ZrCl_2$ catalyst was decreased with increase of comonomer concentration, which is different from the usual comonomer effect of the metallocene catalysts with a bridge structure. The contents of 1-octene in the copolymer from the catalyst with 2-p-tolyl substituent were higher than those from the catalyst without that substituent. The melting point, crystallinity, and molecular weight decreased with comonomer content which was more apparent for $rac-Me_2Si(2-p-tolylindenyl)_2ZrCl_2$ catalyst.

Anti-proliferative Activity of Ethanol Extracts of Root of Aralia cordata var. continentalis through Proteasomal Degradation of Cyclin D1 in Human Colorectal Cancer Cells (독활 에탄올 추출물의 대장암 세포에서 Cyclin D1 단백질 분해 유도를 통한 세포 생육 억제활성)

  • Park, Su Bin;Park, Gwang Hun;Song, Hun Min;Park, Ji Hye;Shin, Myeong Su;Son, Ho Jun;Um, Yurry;Jeong, Jin Boo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.5
    • /
    • pp.328-334
    • /
    • 2017
  • Background: In this study, we evaluated the anti-cancer activity and potential molecular mechanism of 70% ethanol extracts of the root of Aralia cordata var. continentalis (Kitagawa) Y. C. Chu (RAc-E70) against human colorectal cancer cells. Methods and Results: RAc-E70 suppressed the proliferation of the human colorectal cancer cell lines, HCT116 and SW480. Although RAc-E70 reduction cyclin D1 expression at the protein and mRNA levels, RAc-E70-induced reduction in cyclin D1 protein level occurred more dramatically than that of cyclin D1 mRNA. The RAc-E70-induced downregulation of cyclin D1 expression was attenuated in the presence of MG132. Additionally, RAc-E70 reduced HA-cyclin D1 levels in HCT116 cells transfected with HA-tagged wild type-cyclin D1 expression vector. RAc-E70-mediated cyclin D1 degradation was blocked in the presence of LiCl, a $GSK3{\beta}$ inhibitorbut, but not PD98059, an ERK1/2 inhibitor and SB203580, a p38 inhibitor. Furthermore, RAc-E70 phosphorylated cyclin D1 at threonine-286 (T286), and LiCl-induced $GSK3{\beta}$ inhibition reduced the RAc-E70-mediated phosphorylation of cyclin D1 at T286. Conclusions: Our results suggested that RAc-E70 may downregulate cyclin D1 expression as a potential anti-cancer target through $GSK3{\beta}$-dependent cyclin D1 degradation. Based on these findings, RAc-E70 maybe a potential candidate for the development of chemopreventive or therapeutic agents for human colorectal cancer.

Optical Absorption and Polarogram of Macrocyclic Nickel (II) Complexes in Polar Solvents (극성용매에서 거대고리 Ni (II) 착물의 광흡수와 폴라로그램)

  • Park Yuj-Chul;Jong-Chul Byun
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.168-177
    • /
    • 1987
  • The equilibria of chemical reaction between $\alpha$-Ni(rac-[14]-decane)$^{2+}$ and polar solvents(L; ANT, MFA, DMSO, DMF, and DMA) have been investigated by the spectrophotometric method at $25^{\circ}C$. (The equilibrium constants($K_1$) of) the first step in ANT, MFA, DMSO, DMF, and DMA were 31.0, 27.5, 21.3 15.9, and 6.4, respectively. The smallness of equilibrium constants ($K_2$) of the second step compared with $K_1$, was observed. $\alpha$-Ni(rac-[14]-dacane)$^{2+}$ + L $\leftrightharpoons$ [$\alpha$-Ni(rac-[14]-decane){\cdot}L]$^{2+}$ : $K_1$.[$\alpha$-Ni(rac-[14]-decane){\cdot}L)$^{2+}$+ L $\leftrightharpoons$ [$\alpha$-Ni(rac-[14]-decane){\cdot}$L_2$)$^{2+}$ :$K_2$. The relationship between d-d absorption energy and half-wave potential of complex ions at ACT was considered. Macrocyclic ligands increasing d-d transition energy caused half-wave potentials of Ni(II)-macrocycle to be shifted more positively. The half-wave potentials for Ni(rac-1[14]7-diene)$^{2+}$, Ni(meso-1[14]7-diene)$^{2+}$, Ni(1[14]4-diene)$^{2+}$, $\alpha$-Ni(rac-[14]-decane)$^{2+}$, ${\beta}-Ni(rac-[14]-decane)$^{2+}$, and Ni(meso-[14]-decane)$^{2+}$ reductions were -1.419, -1.431, -1.450, -1.473, and -1.480 (V vs. SCE), respectively. The d-d transition energies ($\nu_{max},\;cm^{-1}$) of the Ni(meso-[14]-decane)$^{2+}$ isomer were discussed with the dielectric constant (${\varepsilon}/{\varepsilon}_0$) of the various solvents, $\nu_{max}(cm^{-1})$ increased with increasing ${\varepsilon}/{\varepsilon}_0$.

  • PDF

Multiple Effects of a Novel Epothilone Analog on Cellular Processes and Signaling Pathways Regulated by Rac1 GTPase in the Human Breast Cancer Cells

  • Zhang, Hong;An, Fan;Tang, Li;Qiu, Rongguo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.109-120
    • /
    • 2014
  • The epothilones are a class of microtubule inhibitors that exhibit a strong antitumor activity. UTD2 is a novel epothilone analog generated by genetic manipulation of the polyketide biosynthetic gene cluster. This study investigated the effects of UTD2 on the actin cytoskeleton and its critical regulators, and the signaling pathways which are essential for cell motility, growth and survival in MCF-7 breast cancer cells. Results showed that UTD2 inhibited the cellular functions of actin cytoskeleton, such as wound-closure, migration and invasion, as well as adhesion. Our study further demonstrated that UTD2 suppressed Rac1 GTPase activation and reduced the activity of PAK1, which is a downstream effector of Rac1, while the activity of Cdc42 was not affected. Additionally, the phosphorylation of p38 and ERK were significantly inhibited, but the phosphorylation of JNK remained the same after UTD2 treatment. Moreover, UTD2 inhibited the activity and mRNA expression of MMP-2, which plays a key role in cell motility. UTD2 also reduced the phosphorylation of Akt, which is an important signaling kinase regulating the cell survival through Rac1. Furthermore, UTD2 interrupted the synergy between Rac1 and Raf in focus formation assays. Taken together, these results indicated that UTD2 exerted multiple effects on the actin cytoskeleton and signaling pathways associated with Rac1. This study provided novel insights into the molecular mechanism of the antineoplastic and antimetastatic activities of epothilones. Our findings also suggest that the signaling pathways regulated by Rac1 may be evaluated as biomarkers for the response to therapy in clinical trials of epothilones.

v-Crk Induces Rac-dependent Membrane Ruffling and Cell Migration in CAS-deficient Embryonic Fibroblasts

  • Sung, Bong Hwan;Yeo, Myoung Gu;Oh, Hye Jin;Song, Woo Keun
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.131-137
    • /
    • 2008
  • Crk-associated substrate (CAS) is a focal adhesion protein that is involved in integrin signaling and cell migration. CAS deficiency reduces the migration and spreading of cells, both of which are processes mediated by Rac activation. We examined the functions of v-Crk, the oncogene product of the CT10 virus p47gag-crk, which affects cell migration and spreading, membrane ruffling, and Rac activation in CAS-deficient mouse embryonic fibroblasts (CAS-/- MEFs). CAS-/- MEFs showed less spreading than did CAS+/+ MEFs, but spreading was recovered in mutant cells that expressed v-Crk (CAS-/-v-Crk MEF). We observed that the reduction in spreading was linked to the formation of membrane ruffles, which were accompanied by Rac activation. In CAS-/- MEFs, Rac activity was significantly reduced, and Rac was not localized to the membrane. In contrast, Rac was active and localized to the membrane in CAS-/-v-Crk MEFs. Lamellipodia protrusion and ruffle retraction velocities were both reduced in CAS-/- MEFs, but not in CAS-/-v-Crk MEFs. We also found that microinjection of anti-gag antibodies inhibited the migration of CAS-/-v-Crk MEFs. These findings indicate that v-Crk controls cell migration and membrane dynamics by activating Rac in CAS-deficient MEFs.