• Title/Summary/Keyword: Rabin Hash

Search Result 1, Processing Time 0.014 seconds

Distributed data deduplication technique using similarity based clustering and multi-layer bloom filter (SDS 환경의 유사도 기반 클러스터링 및 다중 계층 블룸필터를 활용한 분산 중복제거 기법)

  • Yoon, Dabin;Kim, Deok-Hwan
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.5
    • /
    • pp.60-70
    • /
    • 2018
  • A software defined storage (SDS) is being deployed in cloud environment to allow multiple users to virtualize physical servers, but a solution for optimizing space efficiency with limited physical resources is needed. In the conventional data deduplication system, it is difficult to deduplicate redundant data uploaded to distributed storages. In this paper, we propose a distributed deduplication method using similarity-based clustering and multi-layer bloom filter. Rabin hash is applied to determine the degree of similarity between virtual machine servers and cluster similar virtual machines. Therefore, it improves the performance compared to deduplication efficiency for individual storage nodes. In addition, a multi-layer bloom filter incorporated into the deduplication process to shorten processing time by reducing the number of the false positives. Experimental results show that the proposed method improves the deduplication ratio by 9% compared to deduplication method using IP address based clusters without any difference in processing time.