• 제목/요약/키워드: Rabbit atrium

검색결과 17건 처리시간 0.02초

부자(附子) Butanol fraction의 강심작용(强心作用)에 관한 연구(硏究) (Studies of the actions of Aconiti tuber butanol fraction on the mechanical and electrical properties of isolated rabbit atrium)

  • 홍사악;박찬웅;김명석;신상구
    • 대한약리학회지
    • /
    • 제11권1호
    • /
    • pp.7-13
    • /
    • 1975
  • In Chinese medicine, it is said that Aconiti tuber has cardiotonic, diuretic and analgesic effects. Kim et al reported that alkaloid free part of Aconiti tuber, $CHCI_3$ insoluble fraction, showed inotropic effect on isolated frog heart and inotropic effect is potenciated by n-butanol fractionation. To investigate the effect of Aconiti tuber butanol fraction on the mechanical and electrical properties of heart, change of active tension, excitability and refractory period of isolated rabbit atrium in the presence of butanol fraction were measured and the comparison with that of ouabain and quinidine was done. The observed results are as follows. 1. $5{\times}10^{-4}g/ml$ concentration of Aconiti tuber butanol fraction showed approximately same effect with therapeutic concentration of ouabain on the increment of contractile force, and the effect of $2{\times}10^{-3}g/ml$ was greater than that of $1{\times}10^{-5}g/ml$ of ouabain. 2. Acceleration of rate of contractile force increment in the presence of Aconiti tuber butanol fraction was greater than in ouabain, and the time to maximum tension was shorter in Aconiti tuber butanol fraction than in ouabain. 3. The excitability of isolated atrium was slightly increased at low concentration of Aconiti tuber butanol fraction, while decreased at higher concentration. 4. Aconiti tuber butanol fraction slightly prolonged refractory period of isolated right atrium at the concentration of $2{\times}10^{-3}g/ml$.

  • PDF

Haloperidol 이 심혈관계에 미치는 영향 (Experimental Studies on the Cardiovascular Effects of Haloperidol in Cat and Rabbit)

  • 안영수
    • 대한약리학회지
    • /
    • 제11권2호
    • /
    • pp.19-27
    • /
    • 1975
  • Haloperidol, a butyrophenone, was synthetized by Janssen and introduced for the treatment of psychosis. Although structurally different from the phenothiazines, the butyrophenones share many of their pharmacological properties, such as inhibition of conditioned avoidance response, blocking effect of amphetamine reaction, producing catalepsy, antishock effect and protection against the lethal effects of catecholalmines. Chlorpromazine can lower the arterial blood pressure through its adrenergic blocking activity, its direct effect in relaxing vascular smooth muscle, its direct effect in depressing the myocardium and its action in a complex manner on the central nervous system. In the case of haloperidol, however, was not clarified the mechanism of lowering the blood pressure. The present paper describes the effects of haloperidol on cardiovascular system to investigate the mechanisms of its actions on the arterial blood pressure. The results are followings; 1. In anesthetized cats, intravenous administration of haloperidol and chlorpromazine in the dose of 0.1mg/kg produced a slight decrease in the blood pressure, which followed by complete recovery within $30{\sim}60$ minutes. In the dose of 3mg/kg, however, both produced an abrupt and marked decrease of the blood pressure, which followed by delayed recovery. 2. Haloperidol in the dose ranges of 0.1mg to 3.0mg/kg tended to produce the heart rate slowing in the cats, while chlorpromazine has no effect on the rate. 3. Following administration of haloperidol or chlorpromazine, epinephrine reversal in the arterial blood pressure was observed in the cat, however the responses of norepinephrine and acetylcholine were little affected. 4. In the isolated rabbit atrium the contractility was depressed by haloperidol in the doses over 0.5mg per 100ml, but the rate was not affected. In contrast, the epinephrine-induced contractility was not depressed after haloperidol treatment. However, the increased rate of atrium by epinephrine was partially blocked after haloperidol. 5. In the isolated rabbit aortic strip, epinephrine-induced contraction was blocked by haloperidol. With the above results, it may be concluded that the hypotensive effect of haloperidol was largely due to ${\alpha}$-adrenergic blocking properties and the direct effect in depressing the myocardium as well as its action on central nervous system.

  • PDF

Etomidoline이 각종 평활근에 미치는 영향 (Effect of Etomidoline on the Isolated smooth Muscle of Rabbit)

  • 김원준;김정희;신윤용
    • 대한약리학회지
    • /
    • 제16권2호
    • /
    • pp.25-29
    • /
    • 1980
  • Etomidoline ($Nonspa^{\circledR}$), which is chemically related to tertiary amine, is new synthetic antispasmodic agent with analgesic action. Antispasmodic effect of this agent is stronger than hyoscine butylbromide ($Buscopan^{\circledR}$), quaternary amine, and the absorption from intestine is also much higher. This study was undertaken to determine the effect of etomidoline on duodenal motility and other smooth muscles of rabbit. Strips of various isolated smooth muscle, 2 cm long from adult rabbits weighting about 2 kg, were suspended in a muscle chamber containing Tyrode's solution, which was bubbled with oxygen gas, and the temperature of the solution was kept constant at $38^{\circ}C$. After being washed with fresh solution several times the strips of smooth muscle attained constant motility and tonus. Etomidoline and other drugs were added in various concentrations to the chamber. Contractility of the strips was measured by using polygraph (Grass, model 7). The results are as follows: 1) In isolated rabbit atrium etomidoline produces a slight depression of contractility and the rate is also decreased. 2) On the other hand, etomidoline relaxed isolated strips of stomach, duodenal, and detrusor of rabbit. This relaxing effect of etomidoline on isolated duodenal strip of rabbit was not blocked by ${\alpha}$-adrenergic blocking agent, phenoxybenzamine, but by ${\beta}$-adrenergic blocking agent, propranolol. 3) Etomidoline did not exert any effect on isolated aorta, gall bladder, and trigone of rabbit. From the above results, it may be concluded that the relaxing effect of etomidoline on duodenal strip is related ${\beta}$-adrenergic receptor.

  • PDF

부자 Butanol Fraction이 가토 심장근 Microsomal $Na^+-K^+$-activated ATPase 활성도에 미치는 영향 (The effect of Aconiti tuber butanol fraction on the rabbit heart microsomal $Na^+-K^+$-activated ATPase activity)

  • 신상구;임정규;박찬웅;김명석
    • 대한약리학회지
    • /
    • 제12권1호
    • /
    • pp.7-14
    • /
    • 1976
  • Aconiti tuber butanol fraction shows positive inotropic effect on the isolated atrium of rabbit heart. To investigate the mechanism, the effect on microsomal ATPase activity of rabbit heart is observed. The microsomal fraction which contains the $Na^+$- and $K^+$-activated ATPase in the presence of $Mg^{++}$ is isolated from the left ventricle of rabbit heart. The microsomal ATPase activity is maximally stimulated at $Na^+$ and $K^+$ concentration of 100 mM and 10 mM respectively. Microsomal $Na^+-K^+$-activated ATPase is inhibited by ouabain and Aconiti tuber butanol fraction. Ouabain and Aconiti tuber butanol fraction depress $Na^+$-stimulation on microsomal ATPase activity, and the inhibitory effects are not completely reversed at $Na^+$ concentration of 300 mM. Also, $K^+$-stimulation on microsomal ATPase activity is inhibited by ouabin and Aconiti tuber butanol fraction and the inhibitions are not compeletely reversed at $K^+$ concentration of 30 mM. It is, therefore, suggested that the inhibitory effect of Aconiti tuber butanol fraction on the microsomal ATPase activity may contribute to leading to the positive inotropic effect.

  • PDF

토끼 심방근에서 Na-Ca 교환 전류에 대한 Bay K, cAMP, Isoprenaline 효과 (Effects of Bay K, cAMP and Isoprenaline on the Na-Ca Exchange Current of Single Rabbit Atrial Cells)

  • 호원경;엄융의
    • The Korean Journal of Physiology
    • /
    • 제24권2호
    • /
    • pp.377-388
    • /
    • 1990
  • Ca movements during the late plateau phase in rabbit atrium implicate Na-Ca exchange. In single atrial cells isolated from the rabbit the properties of the inward current of Na-Ca exchange were investigated using the whole cell voltage clamp technique. The inward currents were recorded during repolarization following brief 2 ms depolarizing pulse to +40 mV from a holding potential of -70 mV. Followings are the results obtained: 1) When stimulated every 30 sec, the inward currents were activated and reached peak values $6{\sim}12\;ms$ after the beginning of depolarizing pulse. The mean current amplitude was 342 pA/cell. 2) The current decayed spontaneously from the peak activation and the timecourse of the relaxation showed two different phases: fast and slow phase. 3) The recovery of the inward current was tested by paired pulse of various interval. The peak current recovered exponentialy with a time course similar to that of Ca current recovery. 4) Relaxation timecourse was also affected by pulse interval and time constant was reduced almost linearly according to the decrease of pulse interval between 30 sec and 1 sec. 5) The peak inward current was increased by long prepulse stimulation, Bay K, isoprenaline or c-AMP. 6) The relaxation time constant of the inward current was prolonged by Bay K or c-AMP, and shortened by isoprenaline. From the above results, it could be concluded that increase of the calcium current potentiates and prolongs intracellular calcium transients, while shortening of the timecourse by isoprenaline or short interval stimulations might be due to the facilitation of Ca uptake by SR.

  • PDF

허혈성 자극에 의한 심방이뇨 호르몬 분비 반응의 특성 (Characteristics of hypoxia-induced ANP Secretion in Perfused Beating Atria)

  • 김공수;김민호;김창곤;김석기;조경우;최훈
    • Journal of Chest Surgery
    • /
    • 제33권5호
    • /
    • pp.398-406
    • /
    • 2000
  • Background: Cardiac atrium is an endocrine gland secreting a family of natriuretic peptides. The secretion of atrial natriuretic peptide(ANP) had been shown to be controlled by variable factors. The change in atrial dynamics have been considered as one of the most prominent stimuli for the stimulation of ANP secretion. Hypoxic stress has been shown to increase cardiac ANP secretion. However, the mechanism by which hypoxia increases ANP secretion cardiac ANP secretions. However, the mechanism by which hypoxia increases ANP secretion has not to be defined. Therefore, the purpose of the present study was tow-fold: to develop a protocol to defined the effect of hypoxia on ANP secretion in perfused beating rabbit atria and to clarify the mechanism responsible for the accentuation by hypoxia of ANP secretion. Material and Method: Experiments have been done in perfused beating rabbit atria. ANP was measured by radioimmunoassay. Result: Hypoxic stimulus with nitrogen decreased atrial stroke volume. The decrease in atrial stroke volume recovered basal level during the period of recovery with oxygen. ANP secretion and the concentration of perfusate ANP in terms of extracellular fluid(ECF) translocation which reflects the rate of myocytic release of ANP were increased by hypoxia and returned to basal levels during the recovery. Changes in ECF translocation paralleled by hypoxia and returned to basal levels during the recovery. Changes in ECF translocation paralleled to that of atrial stroke volume. At the start of recovery in atrial storke volume, ECF tranalocation incrased for several minutes. The above responses were stable and reproducible. Glibenclamide treatment prevented the recovery in atrial stroke volume. Increments by hypoxia of ANP secretion and ANP concentration were suppressed by glibenclamide. Conclusion: These results indicate that hypoxia incrased atrial myocytic ANP release and that the mechanism responsible for the accentuation is partially related to the change in K+ATP channel activity.

  • PDF

Studies on Cardio-suppressant, Vasodilator and Tracheal Relaxant Effects of Sarcococca saligna

  • Ghayur, Muhammad Nabeel;Gilani, Anwarul Hassan
    • Archives of Pharmacal Research
    • /
    • 제29권11호
    • /
    • pp.990-997
    • /
    • 2006
  • Sarcococca saligna is a shrub that is traditionally used for its medicinal properties in Pakistan. In this study we report the cardio-suppressant, vasodilator and tracheal relaxant activities of the aqueous-methanolic extract (Ss.Cr) of the plant. Ss.Cr, that tested positive for the presence of saponins, flavonoids, tannins, phenols, and alkaloids, exhibited a dose-dependent (0.3-5 mg/mL) negative inotropic and chronotropic effect on the isolated guinea-pig atrium which was resistant to atropine ($1\;{\mu}M$) and aminophylline ($10\;{\mu}M$) pretreatment. In rabbit thoracic aorta, Ss.Cr dose-dependently (0.1-3 mg/mL) relaxed the high $K^{+}$ (80 mM) and phenylephrine ($PE,\;1\;{\mu}M$)-induced contractions, indicating a possible $Ca^{++}$ channel blocking (CCB) effect. When tested against PE ($1\;{\mu}M$) control peaks in normal $Ca^{++}\;and\;Ca^{++}$-free Kreb's solution, Ss.Cr exhibited dose-dependent (0.1-3 mg/mL) inhibition, being more potent in relaxing the PE responses in $Ca^{++}$-free Kreb's solution, thus indicating specific blockade of $Ca^{++}$ release from the intracellular stores. Ss.Cr also relaxed the agonist-induced contractions in: a) rat aorta irrespective of the presence of endothelium or nitric oxide synthase inhibitor L-NAME and b) rabbit and guinea-pig tracheal strips. The data shows that Ss.Cr possesses possible $Ca^{++}$ channel blocking activity which might be responsible for its observed cardio-suppressant, vasodilator and tracheal relaxant effects though more tests are required to confirm this $Ca^{++}$ channel blocking effect.

Molecular Signatures of Sinus Node Dysfunction Induce Structural Remodeling in the Right Atrial Tissue

  • Roh, Seung-Young;Kim, Ji Yeon;Cha, Hyo Kyeong;Lim, Hye Young;Park, Youngran;Lee, Kwang-No;Shim, Jaemin;Choi, Jong-Il;Kim, Young-Hoon;Son, Gi Hoon
    • Molecules and Cells
    • /
    • 제43권4호
    • /
    • pp.408-418
    • /
    • 2020
  • The sinus node (SN) is located at the apex of the cardiac conduction system, and SN dysfunction (SND)-characterized by electrical remodeling-is generally attributed to idiopathic fibrosis or ischemic injuries in the SN. SND is associated with increased risk of cardiovascular disorders, including syncope, heart failure, and atrial arrhythmias, particularly atrial fibrillation. One of the histological SND hallmarks is degenerative atrial remodeling that is associated with conduction abnormalities and increased right atrial refractoriness. Although SND is frequently accompanied by increased fibrosis in the right atrium (RA), its molecular basis still remains elusive. Therefore, we investigated whether SND can induce significant molecular changes that account for the structural remodeling of RA. Towards this, we employed a rabbit model of experimental SND, and then compared the genome-wide RNA expression profiles in RA between SND-induced rabbits and sham-operated controls to identify the differentially expressed transcripts. The accompanying gene enrichment analysis revealed extensive pro-fibrotic changes within 7 days after the SN ablation, including activation of transforming growth factor-β (TGF-β) signaling and alterations in the levels of extracellular matrix components and their regulators. Importantly, our findings suggest that periostin, a matricellular factor that regulates the development of cardiac tissue, might play a key role in mediating TGF-β-signaling-induced aberrant atrial remodeling. In conclusion, the present study provides valuable information regarding the molecular signatures underlying SND-induced atrial remodeling, and indicates that periostin can be potentially used in the diagnosis of fibroproliferative cardiac dysfunctions.

수축과 활동전압의 Staircase 현상에 대한 Ca-전류 및 세포내 $Ca^{2+}$ 농도 변화의 영향 (Effects of the Changes in Ca-current and Intracellular Ca-concentration on the Contraction and Action Potential Staircase)

  • 박춘옥;서인석;호원경;엄융의;김우겸
    • The Korean Journal of Physiology
    • /
    • 제23권2호
    • /
    • pp.301-312
    • /
    • 1989
  • It well known that the magnitude of contraction and the shape of action potential depend upon the stimulation frequency and the duration of resting period (positive and negative staircase). Although the underlying mechanism of the staircase phenomenon is not fully understood, it has been suggested that staircase could be related to the intracllular $Ca^{2+}$ concentration. In order to elucidate the role of intracellular $Ca^{2+}$ on the contraction and action potential staircases, we examined the effects of 1 mM 4-aminopyridine (4-AP), 0.5 uM verapamil, 1 uM ryanodine, or reduction of extracellular Na concentration to 30% $(substituted\;by\;equimolar\;Li^+)$ in small atrial strips of the rabbit $(3{\times}10\;mm)$. The results obitained were as follows; 1) When the stimulation frequency was increased from 0.1 Hz to 2 Hz, positive staircase of the contraction and elevation of plateau level in action potential were found in control and the conditions of Na reduction and treatments of 4-AP, verapamil and ryanodine. 2) When stimulation frequency returned to 0.1 Hz from 1 min rest just after 2 Hz stimulation fer 1 min, the magnitudes of initial few contractions were larger than that of steady state contraction (post-rest potentiation) except, ryanodine or Na-reduction groups. 3) Negative staircase of contraction was developed in control and 4-AP group at post-rest 0.1 Hz stimulation and the plateau level of the action potential was decreased at the same time. But the reduction of contraction or the plateau level was much smaller in 4-AP group and than in control. From the above results it can be concluded that contraction and action potential staircase is dependent upon transmembrane $Ca^{2+}-current\;and\;Ca^{2+}$release from the SR.

  • PDF

심근세포 및 혈관 평활근에 대한 Nitric Oxide 작용의 민감성의 차이 (Nitric Oxide Modulates Calcium Current in Cardiac Myocytes but not in Intact Atrial Tissues)

  • 박춘옥;강영진;이회영;장기철
    • 대한약리학회지
    • /
    • 제31권3호
    • /
    • pp.279-284
    • /
    • 1995
  • 본 연구의 목적은 외부에서 nitric oxide (NO)를 투여 하였을때 심근 수축력, 심박동수의 변화 및 혈관 평활근에 대한 효과를 비교함으로서 NO에 대한 이들 장기의 민감도가 서로 같은지 또는 상이한지를 알아보고자 하였다. 본 실험에서는 PIANO 방법에 의한 근장력의 변화와 아울러 심근에서의 $Ca^{2+}$ current를 측정하였다. 랫트의 심방근에 대한 PIANO $(STZ,\;100\;{\mu}M)$는 심근수축력 및 심박동수에 전혀 변화를 주지 않았지만 혈관 평활근에서는 강한 이완 작용을 나타내었다. 한편, 8-Br-cGMP도 고농도 $(100\;{\mu}M)$에서만 심근 수축력을 억제하였다. 토끼의 심방근세포에서 Whole cell voltage patch clamp를 사용시 bradykinin, SNP, 8-Br-cGMP 및 PIANO는 $Ca^{2+}$ current를 억제하였다. 이러한 사실은 외부에서 공급되는 NO에 대한 심근과 혈관 평활근의 반응에는 민감도의 차이가 있음을 암시하며 더 나아가 심근의 경우에도 NO 반응에는 종 (species)간의 차이와 동일 종이라 하더라도 세포(cell)와 장기(tissue)에 차이가 있을 가능성을 제시하였다.

  • PDF