• Title/Summary/Keyword: Rab3A

Search Result 39, Processing Time 0.03 seconds

Reproducibility of Trunk Control Assessment and the Clinical Utility of the Distinguishing Barthel Index in Chronic Stroke Patients (만성 뇌졸중 환자들의 체간 조절 평가의 재현성과 Barthel Index구분을 위한 임상 유용성)

  • Seung-Heon An;Dae-Sung Park
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.19 no.3
    • /
    • pp.55-63
    • /
    • 2024
  • PURPOSE: This study examined the test-retest reliability and clinical utility of the Modified Trunk Impairment Scale (mTIS), Trunk Control Test (TCT), and Postural Assessment Scale for Stroke - Trunk Control (PASS-TC) in patients with chronic stroke. METHODS: Thirty-eight stroke patients were reassessed using the mTIS, TCT, and PASS-TC with a seven-day interval between assessments. The test-retest reliability was evaluated using the intraclass correlation coefficient (ICC2,1), the standard error of measurement (SEM), the minimal detectable change (MDC), and MDC%, as well as Bland-Altman analysis. The relationship between the mTIS, TCT, PASS-TC scores, and the Barthel Index (BI) was also investigated. RESULTS: The test-retest reliability for the mTIS, TCT, and PASS-TC was high, with ICC values ranging from .91 to .94 (95% confidence interval: .83-.97). The MDCs for the mTIS and TCT were 2.35 and 13.9, respectively, while the MDC for the P ASS-TC was 2.54, all below 20% of the maximum possible score, indicating reliable measurement. The optimal mTIS cut-off score for distinguishing between mild (75-95 points) and severe (50-74 points) dependence on the BI was ≥ 9.5, with an accuracy of 79%. Patients with an mTIS score ≥ 9.5 (out of 15) showed an 18-fold higher likelihood of achieving a mild level of functional independence than those with a score < 9.5. CONCLUSION: The mTIS, TCT, and PASS-TC showed high test-retest reliability and no systematic errors in chronic stroke patients. The MDC values were reliable, indicating meaningful change. Among these, the mTIS is a sensitive and a useful tool for predicting functional independence in clinical practice and is straightforward to apply.

Alleviation of Salt Stress by Enterobacter sp. EJ01 in Tomato and Arabidopsis Is Accompanied by Up-Regulation of Conserved Salinity Responsive Factors in Plants

  • Kim, Kangmin;Jang, Ye-Jin;Lee, Sang-Myeong;Oh, Byung-Taek;Chae, Jong-Chan;Lee, Kui-Jae
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.109-117
    • /
    • 2014
  • Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.

Green Synthesis of Copper Nano-Drug and Its Dental Application upon Periodontal Disease-Causing Microorganisms

  • El-Rab, Sanaa M.F. Gad;Basha, Sakeenabi;Ashour, Amal A.;Enan, Enas Tawfik;Alyamani, Amal Ahmed;Felemban, Nayef H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1656-1666
    • /
    • 2021
  • Dental pathogens lead to chronic diseases like periodontitis, which causes loss of teeth. Here, we examined the plausible antibacterial efficacy of copper nanoparticles (CuNPs) synthesized using Cupressus macrocarpa extract (CME) against periodontitis-causing bacteria. The antimicrobial properties of CME-CuNPs were then assessed against oral microbes (M. luteus. B. subtilis, P. aerioginosa) that cause periodontal disease and were identified using morphological/ biochemical analysis, and 16S-rRNA techniques. The CME-CuNPs were characterized, and accordingly, the peak found at 577 nm using UV-Vis spectrometer showed the formation of stable CME-CuNPs. Also, the results revealed the formation of spherical and oblong monodispersed CME-CuNPs with sizes ranged from 11.3 to 22.4 nm. The FTIR analysis suggested that the CME contains reducing agents that consequently had a role in Cu reduction and CME-CuNP formation. Furthermore, the CME-CuNPs exhibited potent antimicrobial efficacy against different isolates which was superior to the reported values in literature. The antibacterial efficacy of CME-CuNPs on oral bacteria was compared to the synergistic solution of clindamycin with CME-CuNPs. The solution exhibited a superior capacity to prevent bacterial growth. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and fractional inhibitory concentration (FIC) of CME-CuNPs with clindamycin recorded against the selected periodontal disease-causing microorganisms were observed between the range of 2.6-3.6 ㎍/ml, 4-5 ㎍/ml and 0.312-0.5, respectively. Finally, the synergistic antimicrobial efficacy exhibited by CME-CuNPs with clindamycin against the tested strains could be useful for the future development of more effective treatments to control dental diseases.

Rab Effector EHBP1L1 Associates with the Tetratricopeptide Repeat Domain of Kinesin Light Chain 1 (Kinesin Light Chain 1 (KLC1)의 Tetratricopeptide Repeat (TPR) 도메인과 Rab effector, EHBP1L1의 결합)

  • Jeong, Young Joo;Park, Sung Woo;Kim, Sang-Jin;Kim, Mooseong;Urm, Sang-Hwa;Lee, Jung Goo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.10-17
    • /
    • 2020
  • Kinesin-1 is microtubule-dependent plus-end direct molecular motor protein essential for intracellular transport. It is a member of the kinesin superfamily proteins (KIFs) which transport cargo, including organelles, vesicles, neurotransmitter receptors, cell-signaling molecules, and protein complexes through interaction between its light chain subunit and the cargo. Kinesin light chain 1 (KLC1) is a non-motor subunit that associates with the kinesin heavy chain (KHC). Although KLC1 interacts with many different adaptor proteins and scaffolding proteins, its binding proteins have not yet been fully identified. We used the yeast two-hybrid assay to identify proteins that interact with the tetratricopeptide repeat (TPR) domain of KLC1, and found an interaction between KLC1 and EH domain-binding protein 1 like 1 (EHBP1L1). EHBP1L1 bound to the region containing all six TPR repeats of KLC1 and did not interact with KIF5B (a motor protein of kinesin 1) or KIF3A (a motor protein of kinesin 2) in the yeast two-hybrid assay. The carboxyl-terminus of the coiled-coil domain of EHBP1L1 is essential for interaction with KLC1. However, another EHBP1L1 isoform, EHBP1, did not interact with KLC1 in the yeast two-hybrid assay. KLC1 interacted with GST-EHBP1L1 and its coiled-coil domain but not with GST only. When co-expressed in HEK-293T cells, EHBP1L1 co-localized with KLC1 and co-immunoprecipitated with KLC1 and KIF5B but not KIF3A. These results suggest that kinesin 1 motor protein may transport EHBP1L1-associated cargo in cells.

Prevalence and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Nasal Specimens: Overcoming MRSA with Silver Nanoparticles and Their Applications

  • Aly E. Abo-Amer;Sanaa M. F. Gad El-Rab;Eman M. Halawani;Ameen M. Niaz;Mohammed S. Bamaga
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1537-1546
    • /
    • 2022
  • Staphylococcus aureus is a cause of high mortality in humans and therefore it is necessary to prevent its transmission and reduce infections. Our goals in this research were to investigate the frequency of methicillin-resistant S. aureus (MRSA) in Taif, Saudi Arabia, and assess the relationship between the phenotypic antimicrobial sensitivity patterns and the genes responsible for resistance. In addition, we examined the antimicrobial efficiency and application of silver nanoparticles (AgNPs) against MRSA isolates. Seventy-two nasal swabs were taken from patients; MRSA was cultivated on Mannitol Salt Agar supplemented with methicillin, and 16S rRNA sequencing was conducted in addition to morphological and biochemical identification. Specific resistance genes such as ermAC, aacA-aphD, tetKM, vatABC and mecA were PCR-amplified and resistance plasmids were also investigated. The MRSA incidence was ~49 % among the 72 S. aureus isolates and all MRSA strains were resistant to oxacillin, penicillin, and cefoxitin. However, vancomycin, linezolid, teicoplanin, mupirocin, and rifampicin were effective against 100% of MRSA strains. About 61% of MRSA strains exhibited multidrug resistance and were resistant to 3-12 antimicrobial medications (MDR). Methicillin resistance gene mecA was presented in all MDR-MRSA strains. Most MDR-MRSA contained a plasmid of > 10 kb. To overcome bacterial resistance, AgNPs were applied and displayed high antimicrobial activity and synergistic effect with penicillin. Our findings may help establish programs to control bacterial spread in communities as AgNPs appeared to exert a synergistic effect with penicillin to control bacterial resistance.

Formulation of Ceftriaxone Conjugated Gold Nanoparticles and Their Medical Applications against Extended-Spectrum β-Lactamase Producing Bacteria and Breast Cancer

  • El-Rab, Sanaa M.F. Gad;Halawani, Eman M.;Hassan, Aziza M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1563-1572
    • /
    • 2018
  • Gold nanoparticles (AuNP) and their conjugates have been gaining a great deal of recognition in the medical field. Meanwhile, extended-spectrum ${\beta}$-lactamases (ESBL)-producing bacteria are also demonstrating a challenging problem for health care. The aim of this study was the biosynthesis of AuNP using Rosa damascenes petal extract and conjugation of ceftriaxone antibiotic (Cef-AuNP) in inhibiting ESBL-producing bacteria and study of in vitro anticancer activity. Characterization of the synthesized AuNP and Cef-AuNP was studied. ESBL-producing strains, Acinetobacter baumannii ACI1 and Pseudomonas aeruginosa PSE4 were used for testing the efficacy of Cef-AuNP. The cells of MCF-7 breast cancer were treated with previous AuNP and Cef-AuNP at different time intervals. Cytotoxicity effects of apoptosis and its molecular mechanism were evaluated. Ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy established the formation of AuNP and Cef-AuNP. Transmission electron microscope demonstrated that the formed nanoparticles were of different shapes with sizes of 15~35 nm and conjugation was established by a slight increase in size. Minimum inhibitory concentration (MIC) values of Cef-AuNP against tested strains were obtained as 3.6 and $4{\mu}g/ml$, respectively. Cef-AuNP demonstrated a decrease in the MIC of ceftriaxone down to more than 27 folds on the studied strains. The biosynthesized AuNP displayed apoptotic and time-dependent cytotoxic effects in the cells of MCF-7 at a concentration of $0.1{\mu}g/ml$ medium. The Cef-AuNP have low significant effects on MCF-7 cells. These results enhance the conjugating utility in old unresponsive ceftriaxone with AuNP to restore its efficiency against otherwise resistant bacterial pathogens. Additionally, AuNP may be used as an alternative chemotherapeutic treatment of MCF-7 cancer cells.

Microarray Analysis of Gene Expression in Raw 264.7 Cells Treated with Hominis Placenta Herbal-Acupuncture Solution (자하거(紫河車) 약침액(藥鍼液)이 Lipopolysaccharide로 처리된 RAW 264.7 대식세포주(大食細胞柱)의 유전자(遺傳子) 발현(發顯)에 미치는 영향(影響))

  • Jang, Hyun-Seok;Lee, Kyung-Min;Lim, Sung-Chul;Eom, Dong-Myung;Seo, Jung-Chul
    • Korean Journal of Oriental Medicine
    • /
    • v.12 no.3 s.18
    • /
    • pp.131-141
    • /
    • 2006
  • Hominis Placenta has a broad array of clinical applications in Korean medicine, including treatment of inflammatory conditions such as rheumatoid arthritis. The purpose of this study is to explore the global gene expression profiles in human RAW 264.7 cell lines treated with Hominis Placenta herbal-acupuncture solution (HPHAS) using microarray analysis. The RAW 264.7 cells were treated with lipopolysaccharide (LPS), HPHAS, or both. Of the 8,170 genes profiled in this study, with a cut-off level of two-fold change in the expression, 72 genes (CTD1, regulating synaptic membrane exocytosis 2, etc.) were upregulated and 135 genes(splicing factor, arginine/serine-rich 1, actinin, alpha 1, etc.) downregulated following LPS treatment. One gene (acrosin) was upregulated and 12 genes (phospholipase A2, group IB, neurofilament, heavy polypeptide 200kDa, etc.) were downregulated following HPHAS treatment. Eleven genes (RAB27A, member RAS oncogene family, eosinophil peroxidase, etc.) were upregulated and 16 genes (V-maf musculoaponeurotic fibrosarcoma oncogene homolog G (avian), RW1 protein, etc.) were downregulated following co-stimulation of HPHAS and LPS. It is thought that microarrays will play an ever-growing role in the advance of our understanding of the pharmacological actions of HPHAS in the treatment of arthritis. Further studies, however, are required to concretely prove the effectiveness of HPHAS.

  • PDF

Classification of the Efficacy of Herbal Medicine Alterations in Neuronal Hypoxia Models through Analysis of Gene Expression

  • Hwang, Joo-Won;Shin, Gil-Cho;Moon, Il-Su
    • The Journal of Korean Medicine
    • /
    • v.35 no.4
    • /
    • pp.36-51
    • /
    • 2014
  • Objectives: cDNA microarray is an effective method to snapshot gene expression. Functional clustering of gene expressions can identify herbal medicine mechanisms. Much microarray data is available for various herbal medicines. This study compares regulated genes with herbal medicines to evaluate the nature of the drugs. Methods: Published microarray data were collected. Total RNAs were prepared from dissociated hippocampal dissociate cultures which were given hypoxic shock in the presence of each herbal medicine. Up- or downregulated genes higher than Global M value 0.5 were selected, clustered in functional groups, and compared with various herbal treatments. Results: 1. Akt2 was upregulated by Acorus gramineus SOLAND, Arisaema amurense var. serratum $N_{AKAI}$ and Coptis chinensis $F_{RANCH}$, and they belong to Araceae herb. 2. Nf-${\kappa}b1$, Cd5, $Gn{\gamma}7$ and Sgne1 were upregulated by Arisaema amurense var. serratum $N_{AKAI}$, Coptis chinensis $F_{RANCH}$ and Rheum coreanum $N_{AKAI}$. 3. Woohwangcheongsim-won, Sohaphyang-won and Scutellaria baicalensis $G_{EORGI}$ downregulated Scp2 and upregulated Tsc2. Woohwangcheongsim-won and Sohaphyang-won upregulated Hba1 and downregulated Myf6. 4. Sohaphyang-won and Scutellaria baicalensis $G_{EORGI}$ downregulated Slc12a1. 5. Woohwangcheongsim-won and Arisaema amurense var. serratum $N_{AKAI}$ upregulated $Rar{\alpha}$, Woohwangcheongsim-won and Coptis chinensis $F_{RANCH}$ downregulated Rab5a and $Pdgfr{\alpha}$, and Woohwangcheongsim-won and Rheum coreanum $N_{AKAI}$ upregulated $Plc{\gamma}1$ and downregulated Pla2g1b and Slc10a1. Conclusions: By clustering microarray, genes are commonly identified to be either up- or downregulated. These results will provide new information to understand the efficacy of herbal medicines and to classify them at the molecular level.

The effect on gene expression profile of rat hippocampus caused by administration of memory enhancing herbal extract (육미지황탕가미방(六味地黃湯加味方)이 흰쥐의 기억능력과 중추신경계 유전자 발현에 미치는 영향)

  • Choi, Bo-Eop
    • Korean Journal of Oriental Medicine
    • /
    • v.8 no.1
    • /
    • pp.109-126
    • /
    • 2002
  • The herbal extract (YMT_02) is a modified herbal extracts from Yukmijihwangtang (YMJ) to promote memory-enhancing. The YMJ extracts has been widely used as an anti-aging herbal medicine for hundred years in Asian countries. The purpose of this study is to; 1) quantitatively evaluate the memory-enhancing effect of YMT_02 by hehavior task, 2) identify candidate genes responsible for enhancing memory by cDNA microarray and 3) assess the anti-oxidant effect of YMT_02 on PC12 cell. Memory retention abilities are addressed by passive avoidance task with Sprague-Dawley (SD) male rat. Before the training session, the rats are subdivided into four groups and administrated with YMT_02, Ginkgo biloba, Soya lecithin and normal saline for 10 days. The retention test was performed. 24 hours after the training session. The retention time of the YMT_02 group was significantly (p<0.05) delayed $({\sim}100%)$, whereas Ginkgo biloba and Soya lecithin treatment delayed 20% and 10% respectively. The hippocampi of YMT_02 and control group were dissected and mRNA was further purified. After synthesizing cDNA using oligo-dT primer, the cDNA were applied and mRNA was further purified. After synthesizing cDNA using oligo-dT primer, the cDNA were applied to Incyte rat GEMTM 2 cDNA microarray. The microarray results show that prealbumin(transthyretin), phosphotidy lethanolamine N-methyltransferase, and PEP-19 are expressed abundantly in the YMT_02 treated group. Especially, PEP-19 is a neuron-specific protein, which inhibits apoptotic processes in neuronal cell. On the other hand, transcripts of RAB15, glutamate receptor subunit 2 and CDK 108 are abundant in control group. Besides, neuronal genes involved in neuronal death or neurodegeneration such as neuronal-pentraxin and spectrin are abundantly expressed in control group. Additionally, the YMT_02 shows an anti oxidative effect in the PC12 cell. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the memory-enhancing effect of herbal extracts YMT_02, for example, anti-apoptotic, anti-oxidative, and neuroprotective effects.

  • PDF

Gene Expression Profile in Carpal Tunnel Syndrome Patients

  • Kim, Hye-Won;Kim, Ki-Nam;Seo, Sang-Hui;Lee, Seung-Ho;Sohn, Sung-Hwa;Kim, Yu-Ri;HaLee, Young-Mie;Shim, Jae-Sun;Ahn, Duck-Sun;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.266-272
    • /
    • 2006
  • Carpal tunnel syndrome (CTS) is one of the most common disorders by under pressure of the median nerve at the wrist in these days. However, pathological mechanism of CTS is unknown. We carried out this study to identify the changes of gene expression and to evaluate possible mechanism in CTS. 120 CTS patients and 30 control patients were included in this study. Patients with a history of diabetes, hypertension, thyroid diseases, and arthritis were excluded. CTS patients were divided to three experimental groups-Mild, Moderate, and Severe group-according to elecrodiagnosis. Radioactive cDNA microarrays (Nylon membrane including 1,152 genes) were used to examine the difference of gene expression profile in CTS. We identified up-regulated genes by more than 2.0 value of z-ratio, and down-regulated genes by less than-2.0 value of z-ratio. 20 genes such as the ITGAL, ITGAM, PECAM1, VIL2, TGFBR2, RAB7, RNF5 and NFKB1 were up-regulated, and 28 genes such as PRG5, CASP8, CDH1, IGFBP5, CBX3, HREV107, PIN, and WINT2 were down-regulated. These genes were related with TGF beta signaling pathway, NF-Kb signaling pathway, antiapoptotic pathway and T cell receptor signaling pathway. However, there were no differences in gene expression profiles according to severities of symptoms. We suggest that CTS could be related with proinflammatory mechanism and antiapoptotic mechanism.