• Title/Summary/Keyword: RTS(Radar Target Signature)

Search Result 2, Processing Time 0.015 seconds

Modeling and Analysis of Radar Target Signatures in the VHF-Band Using Fast Chirplet Decomposition (고속 Chirplet 분리기법을 이용한 VHF 대역 레이더 표적신호 모델링 및 해석)

  • Park, Ji-hoon;Kim, Si-ho;Chae, Dae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.475-483
    • /
    • 2019
  • Although radar target signatures(RTS), such as range profiles have played an important role for target recognition in the X-band radar, they would be less effective when a target is designed to have low radar cross section(RCS). Recently, a number of research groups have conducted the studies on the RTS in the VHF-band where such targets can be better detected than in the X-band. However, there is a lack of work carried out on the mathematical description of the VHF-band RTS. In this paper, chirplet decomposition is employed for modeling of the VHF-band RTS and its performance is compared with that of existing scattering center model generally used for the X-band. In addition, the discriminative signal analysis is performed by chirplet parameterization of range profiles from in an ISAR image. Because the chirplet decomposition takes long computation time, its fast form is further proposed for enhanced practicality.

Feature Extraction and Classification of Target from Jet Engine Modulation Signal Using Frequency Masking (제트 엔진 변조신호에서 주파수 마스킹을 이용한 표적의 특징 추출 및 식별)

  • Kim, Si-Ho;Kim, Chan-Hong;Chae, Dae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.459-466
    • /
    • 2014
  • This paper deals with the method to classify the aircraft target by analyzing its JEM signal. We propose the method to classify the engine model by analyzing JEM spectrum using the harmonic frequency mask generated from the blade information of jet engine. The proposed method does not need the complicated logic algorithm to find the chopping frequency in each rotor stage and the pre-simulated engine spectrum DB used in the previous methods. In addition, we propose the method to estimate the precise spool rate and it reduces the error in estimating the number of blades or in calculating the harmonic frequency of frequency mask.