• 제목/요약/키워드: RTM(Resin Transfer Molding)

검색결과 68건 처리시간 0.02초

Vacuum Assisted Resin Transfer Molding 공정에서의 Microvoids 형성과 이동에 관한 연구 (Experimental Study of the Microvoids formation and Transport in the Vacuum Assisted Resin Transfer Molding Process)

  • Se Won Eun;Woo Il Lee
    • Composites Research
    • /
    • 제16권6호
    • /
    • pp.10-15
    • /
    • 2003
  • RTM 공정에 의하여 생성된 제품은 microvoids의 함유량에 의하여 기계적인 물성치에 큰 영향을 받는다. 본 연구에서는 이러한 microvoid의 형성과 이동을 실험적으로 관찰할 수 있는 방법을 제시하였다. Vacuum assisted RTM공정에서 유동선단에서의 microvoid의 형성과 이동을 DV camera로써 관찰을 한 후, 그것에서 void의 함유량을 구하고, 실험에서 얻어진 결과로 microvoid model에 필요만 factor들을 얻어낼 수 있었다. 이렇게 하여 얻어진 결과를 다시 실험적인 결과와 비교함으로써 서로 일치하는 결과를 얻어낼 수 있었다. 이번 연구에서 얻어진 결과를 수학적인 모델에 대입함으로써 VARTM 공정 중 microvoid의 함유량을 예측할 수 있다.

탄소섬유 드레이핑 및 수지 유동 해석을 통한 CFRP 제조용 RTM 금형 설계 (Design of RTM molds for CFRP by carbon fiber draping and resin flow simulation)

  • 최광묵;채홍준
    • Design & Manufacturing
    • /
    • 제13권1호
    • /
    • pp.25-30
    • /
    • 2019
  • This paper presents the design strategy for the optimal RTM molds of Carbon Fiber Reinforced Plastic (CFRP) by carbon fiber draping and resin flow simulation. First, the mold shape and molding condition were determined considering the undercut and die face of the product in the draping simulation, which made the preliminary shape of the product by compressing the carbon fiber. After that, the diffusion behavior during the injection of resin in the mold was predicted by the resin flow simulation. Finally, the optimal mold shape was designed by selecting the locations of resin injection port and vent based on total results of simulations. In this paper, the mold of automotive side mirror case was selected as the representative product. Also, the actual mold was manufactured based on the simulation design to confirm the practicality of it. This study is expected to contribute to the industry as a technology to improve the reliability and productivity of CFRP producted by RTM process.

RTM 공정에서 기공 최소화를 위한 공정 제어에 관한 연구 (A Study on the Control Strategy to Minimize Voids in Resin Transfer Mold Filling Process)

  • 이도훈;전영재;이우일;엄문광;변준형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.292-296
    • /
    • 2004
  • In case of Resin Transfer Molding(RTM) process, 'race-track' effects and non-uniform fiber volume fraction may cause undesirable resin flow pattern and thus result in dry spots, which affect the mechanical properties of the finished parts. In this study, a real time RTM control strategy to prevent these unfavorable effects is proposed. The control strategy consists of two 'stages' depending on the extent the resin front has reached. Through numerical simulations and experiments, the validity of the proposed scheme is demonstrated. The results show that the proposed scheme is effective in reducing the void formation during RTM mold filling.

  • PDF

고분자 수지 이송 성형에서 브레이드 프리폼의 두께방향 투과율 계수 측정 (Out-of-Permeability Measurement of the Braided Preform in Resin Transfer Molding)

  • Suk, Chae-Hui;Seok, Song-Yeong;Ryun, Yun-Jae
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.87-90
    • /
    • 2003
  • In Resin transfer molding (RTM), composite parts are produced by impregnation of a dry reinforcement with liquid matrix resin. Permeability is a key issue in this process. For thin parts, the resin flow in the thickness direction can be neglected. Therefore thin parts are considered as two-dimensional composites. However the resin flow through the thickness is important to thicker parts and we have to consider out-of-plane permeability. This work discusses a method to measure out-of-plane permeability. The flow rate and pressure drop across the porous media were measured. Also one dimensional form of Darcy's law is applied to calculate the out-of-plane permeability of various preforms. The flow is injected uniformly into layers of the preform. And a circular fiber mat with 6cm diameter was cut and flattened from cylindrical mandrel.

  • PDF

Modeling of the filling process during resin injection/compression molding

  • Chang, Chih-Yuan
    • Advanced Composite Materials
    • /
    • 제16권3호
    • /
    • pp.207-221
    • /
    • 2007
  • The filling process of resin injection/compression molding (I/CM) can be divided into injection and compression phases. During the resin injection the mold is kept only partially closed and thus a gap is present between the reinforcements and the upper mold. The gap results in preferential flow path. After the gap is filled with the resin, the compression action initiates and forces the resin to penetrate into the fiber preform. In the present study, the resin flow in the gap is simplified by using the Stokes approximation, while Darcy's law is used to calculate the flow field in the fiber mats. Results show that most of the injected resins enter into the gap during the injection phase. The resin injection time is extremely short so the duration of the filling process is determined by the final closing action of the mold cavity. Compared with resin transfer molding (RTM), I/CM process can reduce the mold filling time or injection pressure significantly.

Radial flow advancement in multi-layered preform for resin transfer molding

  • Shin, K.S.;Song, Y.S.;Youn, J.R.
    • Korea-Australia Rheology Journal
    • /
    • 제18권4호
    • /
    • pp.217-224
    • /
    • 2006
  • Rapid flow advancement without void formation is essential in the liquid composite molding (LCM) such as resin transfer molding (RTM) and vacuum assisted resin transfer molding (VARTM). A highly permeable layer in multi-layered preform has an important role in improvement of the flow advancement. In this study, a multi-layered preform which consists of three layers is employed. Radial flow experiment is carried out for the multi-layered preform. A new analytic model for advancement of flow front is proposed and effective permeability is defined. The effective permeability for the multi-layered preform is obtained analytically and compared with experimental results. Compaction test is performed to determine the exact fiber volume traction of each layer in the multi-layered preform. Transverse permeability employed in modeling is measured experimentally unlike the previous studies. Accurate prediction of flow advancement is of great use for saving the processing time and enhancing product properties of the final part.

A Study on Co-Injection Resin Transfer Molding

  • Gonzalez, Alfredo;Lee, Doh-Hoon;Lee, Woo-Il;Um, Moon-Kwang;Byun, Joon-Hyung;Kim, Young-Min;Chung, Seung-Hwang;Lee, Byoung-Ho
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.111-116
    • /
    • 2005
  • In this study the compatibility of Epoxy resin with Phenolic using three different separation layer techniques was investigated; some important process variables such as pressure, flow front and deformation were monitored in order to get a better understanding of the process.

  • PDF

사출성형 섬유강화플라스틱 볼트 연결부의 강도 평가를 위한 실험적 연구 (An Experimental Study for the Strength Evaluation of Bolted Connection in Resin Transfer Molding Fiber Reinforced Polymeric Plastic)

  • 최진우;김선희
    • 도시과학
    • /
    • 제11권2호
    • /
    • pp.25-30
    • /
    • 2022
  • Resin Transfer Molding FRP (RTM FRP) is a fiber reinforced polymeric plastic which is manufactured by applying pressure to fibers, injecting resin into a mold, and then impregnating it. RTM FRP is a new construction material suitable for producing non-continuum structural elements such as sole plate because it has excellent strength and can produce many members in a short time. In this study, experiments were conducted to estimate the capacity of the bolted connection of RTM FRP. First, a tensile test was conducted to confirm the mechanical properties such as the tensile strength of the RTM FRP to be used for the bolted connection experiments. In addition, experiments were conducted on the bolted connection with the thickness of the RTM FRP and the edge distance of the bolt as variables. In the first experiment, F4.8 bolts were used, and shear failure of the bolt occurred before the RTM FRPs were failed. The F4.8 bolt is a general structural bolts used for the sole plate of a bridge bearing, and it was confirmed that the RTM FRP has a higher bold bearing strength than the shear strength of a F4.8 bolt. In the second experiment, G12.9 bolts were used, and shear failure of the bolt and bearing failure of the RTM FRP occurred simultaneously. In addition, as the thickness of the RTM FRP and the edge length of the bolt increased, the strength of the joint increased. When analogized with the bearing fracture equation of steel plate, the bolted connection of RTM FRP showed a bearing strength coefficient of 0.420 to 0.549 compared to the tensile strength, and it is considered that further research is needed.

삽입된 장주기 광섬유 격자를 이용한 VARTM 공정에서의 수지이동 및 변형 과정 예측 시스템 설계에 관한 연구 (A Study on the Measurement System Design for the Resin Flow and Curing in the Vacuum Assisted Resin Transfer Molding(VARTM) Process Using the Long Period Fiber Bragg Grating)

  • 윤영기;정승환;이우일;이병호;변준형
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.489-494
    • /
    • 2004
  • Long Period Gratings (LPG) is currently receiving considerable attention because of their consistent measuring results fur pressure, temperature, strain and flow. LPG is easier to prepare and has a high sensitivity compared with Fiber Bragg Gratings (FBG). In addition, this kind of optical fiber sensors could be used for implementations in various structures. In this paper, LPG was used to monitor in situ the resin flow and the curing process in VARTM (Vacuum Assisted Resin Transfer. Molding). In order to demonstrate the effectiveness of the method, FBG is inserted into the glass mat to monitor the resin flow using optical spectrum analyzer (OSA). The curing reactions in VARTM are also observed using the same method. From the results, the attenuation wavelength shift and the loss change of attenuation band can be obtained from the status of the RTM (Resin Transfer Molding) sample owing to the internal variations of the .effective index, temperature, and pressure. It is shown that the proposed LPG is more effective in monitoring the curing reaction than FBG.

RTM을 이용한 노후 지하 매설관의 보수-보강에 관한 연구 (A Study on Repairing Retired Underground Buried Pipes Using RTM)

  • 진우석;권재욱;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.249-252
    • /
    • 2000
  • To overcome problems of excavation technology far repairing or replacing underground buried pipes which are worn out or damaged, various trenchless repair-reinforcement technologies have been invented. But these trenchless technologies also have many problems in the aspect of economy and convenience of operation. In this research, the repair-reinforcement process using RTM (Resin Transfer Molding) which can solve problems of present trenchless technologies was developed. The resin wetting and void removal during RTM process to form large composite structures inside of buried pipes were experimentally investigated. From the experiment, it was found that the new technology had advantage over conventional methods by employing appropriate process parameters and void removal vents.

  • PDF