• Title/Summary/Keyword: RT-PCR (reverse transcription-polymerase chain reaction)

Search Result 637, Processing Time 0.022 seconds

Real-time Reverse Transcription Polymerase Chain Reaction Using Total RNA Extracted from Nasopharyngeal Aspirates for Detection of Pneumococcal Carriage in Children (소아에서 폐렴구균 집락률 측정을 위해 비인두 흡인 물의 총 RNA를 이용한 실시간 중합효소 연쇄반응법)

  • Kim, Young Kwang;Lee, Kyoung Hoon;Yun, Ki Wook;Lee, Mi Kyung;Lim, In Seok
    • Pediatric Infection and Vaccine
    • /
    • v.23 no.3
    • /
    • pp.194-201
    • /
    • 2016
  • Purpose: Monitoring pneumococcal carriage rates is important. We developed and evaluated the accuracy of a real-time reverse transcription polymerase chain reaction (RT-PCR) protocol for the detection of Streptococcus pneumoniae. Methods: In October 2014, 157 nasopharyngeal aspirates were collected from patients aged <18 years admitted to Chung-Ang University Hospital. We developed and evaluated a real-time PCR method for detecting S. pneumoniae by comparing culture findings with the results of the real-time PCR using genomic DNA (gDNA). Of 157 samples, 20 specimens were analyzed in order to compare the results of cultures, real-time PCR, and real-time RT-PCR. Results: The concordance rate between culture findings and the results of real-time PCR was 0.922 (P<0.01, Fisher exact test). The 133 culture-negative samples were confirmed to be negative for S. pneumoniae using real-time PCR. Of the remaining 24 culture-positive samples, 21 were identified as S. pneumonia -positive using real-time PCR. The results of real-time RT-PCR and real-time PCR from 20 specimens were consistent with culture findings for all S. pneumoniae -positive samples except one. Culture and real-time RT-PCR required 26.5 and 4.5 hours to perform, respectively. Conclusions: This study established a real-time RT-PCR method for the detection of pneumococcal carriage in the nasopharynx. Real-time RT-PCR is an accurate, convenient, and time-saving method; therefore, it may be useful for collecting epidemiologic data regarding pneumococcal carriage in children.

Reverse Transcription Polymerase Chain Reaction-based System for Simultaneous Detection of Multiple Lily-infecting Viruses

  • Kwon, Ji Yeon;Ryu, Ki Hyun;Choi, Sun Hee
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.338-343
    • /
    • 2013
  • A detection system based on a multiplex reverse transcription (RT) polymerase chain reaction (PCR) was developed to simultaneously identify multiple viruses in the lily plant. The most common viruses infecting lily plants are the cucumber mosaic virus (CMV), lily mottle virus (LMoV), lily symptomless virus (LSV). Leaf samples were collected at lily-cultivation facilities located in the Kangwon province of Korea and used to evaluate the detection system. Simplex and multiplex RT-PCR were performed using virus-specific primers to detect single- or mixed viral infections in lily plants. Our results demonstrate the selective detection of 3 different viruses (CMV, LMoV and LSV) by using specific primers as well as the potential of simultaneously detecting 2 or 3 different viruses in lily plants with mixed infections. Three sets of primers for each target virus, and one set of internal control primers were used to evaluate the detection system for efficiency, reliability, and reproducibility.

Development of reverse transcription loop-mediated isothermal amplification assays for point-of-care testing of avian influenza virus subtype H5 and H9

  • Zhang, Songzi;Shin, Juyoun;Shin, Sun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.40.1-40.8
    • /
    • 2020
  • Avian influenza (AIV) outbreaks can induce fatal human pulmonary infections in addition to economic losses to the poultry industry. In this study, we aimed to develop a rapid and sensitive point-of-care AIV test using loop-mediated isothermal amplification (LAMP) technology. We designed three sets of reverse transcription LAMP (RT-LAMP) primers targeting the matrix (M) and hemagglutinin (HA) genes of the H5 and H9 subtypes. RT-LAMP targeting the universal M gene was designed to screen for the presence of AIV and RT-LAMP assays targeting H5-HA and H9-HA were designed to discriminate between the H5 and H9 subtypes. All three RT-LAMP assays showed specific amplification results without nonspecific reactions. In terms of sensitivity, the detection limits of our RT-LAMP assays were 100 to 1,000 RNA copies per reaction, which were 10 times more sensitive than the detection limits of the reference reverse-transcription polymerase chain reaction (RT-PCR) (1,000 to 10,000 RNA copies per reaction). The reaction time of our RT-LAMP assays was less than 30 min, which was approximately four times quicker than that of conventional RT-PCR. Altogether, these assays successfully detected the existence of AIV and discriminated between the H5 or H9 subtypes with higher sensitivity and less time than the conventional RT-PCR assay.

Determination of Tyrosinase mRNA in Melanoma by Reverse Transcription-PCR and Optical Mirror Resonance Biosensor

  • Taeboo Choe;Park, Inchul;Seokil Hong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.4
    • /
    • pp.212-215
    • /
    • 2002
  • Tyrosinase transcript In the blood Is known as the marker of malignant melanoma and it has been often determined by using reverse transcription-polymerase chain reaction (RT-PCA) . However, after the PCR process, the quantification of amplified CDMA by the gel electrophoresis is not reliable and time-consuming. for this reason, we tried to quantify the PCR product using a cuvette-type biosensor, where the oligonucleotide probe was immobilized on the cuvette surface and the single strand CDMA, the denatured PCH product, was then hybridized onto the immobilized probe to give a response signal. The response was Immediate and takes 15 min to obtain a stable signal. The biosensor was much more sensitive comparing to the gel electrophoresis method. The quantification of PCR product using a cuvette-type biosensor was feasible and rapid.

Comparison of Molecular Assays for the Rapid Detection and Simultaneous Subtype Differentiation of the Pandemic Influenza A (H1N1) 2009 Virus

  • Lee, Mi Kyung;Kim, Hye Ryoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1165-1169
    • /
    • 2012
  • In April 2009, the H1N1 pandemic influenza virus emerged as a novel influenza virus. The aim of this study was to compare the performances of several molecular assays, including conventional reverse transcription polymerase chain reaction (RT-PCR), two real-time reverse transcription (rRT)-PCRs, and two multiplex RTPCRs. A total of 381 clinical specimens were collected from patients (223 men and 158 women), and both the Seeplex RV7 assay and rRT-PCR were ordered on different specimens within one week after collection. The concordance rate for the two methods was 87% (332/381), and the discrepancy rate was 13% (49/381). The positive rates for the molecular assays studied included 93.1% for the multiplex Seeplex RV7 assay, 93.1% for conventional reverse transcription (cRT)-PCR, 89.7% for the multiplex Seeplex Flu ACE Subtyping assay, 82.8% for protocol B rRT-PCR, and 58.6% for protocol A rRT-PCR. Our results showed that the multiplex Seeplex assays and the cRT-PCR yielded higher detection rates than rRT-PCRs for detecting the influenza A (H1N1) virus. Although the multiplex Seeplex assays had the advantage of simultaneous detection of several viruses, they were time-consuming and troublesome. Our results show that, although rRT-PCR had the advantage, the detection rates of the molecular assays varied depending upon the source of the influenza A (H1N1)v virus. Our findings also suggest that rRT-PCR sometimes detected virus in extremely low abundance and thus required validation of analytical performance and clinical correlation.

Detection of Dirofilaria immitis by Reverse Transcription Polymerase Chain Reaction in Canine (역전사중합효소연쇄반응을 이용한 개심장사상충의 검출)

  • 이영준;박진호;권오덕;이주목
    • Journal of Veterinary Clinics
    • /
    • v.16 no.1
    • /
    • pp.177-181
    • /
    • 1999
  • This study was undertaken to clarify the more accurate detecting method of Dirofilaria immitis. Seven dogs, average 7.47 years old, confirmed with Dirofilaria immitis infection by modified Knott's method were used as the experimental animals. cDNA was constructed using oligodT(15) primer after extracting total RNA from the blood of dogs that were confirmed with Dirofilaria immitis infection. As a result of polymerase chain reaction with template using constructed cDNA, the predicted products of a 378 base-pair DNA fragment was amplified. From these results, RT-PCR was more sensitive and effective than modified Knott's method to detect Dirofilaria immitis in dogs.

  • PDF

Development and Assessment of Specific and High Sensitivity Reverse Transcription Nested Polymerase Chain Reaction Method for the Detection of Aichivirus A Monitoring in Groundwater (지하수 중 Aichivirus A 모니터링을 위한 특이적 및 고감도 이중 역전사 중합효소연쇄반응 검출법 개발 및 평가)

  • Bae, Kyung Seon;Kim, Jin-Ho;Lee, Siwon;Lee, Jin-Young;You, Kyung-A
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.190-198
    • /
    • 2021
  • Human Aichivirus (Aichivirus A; AiV-A) is a positive-sense single-strand RNA non-enveloped virus that has been detected worldwide in various water environments including sewage, river, surface, and ground over the past decade. To develop a method with excellent sensitivity and specificity for AiV-A diagnosis from water environments such as groundwater, a combination capable of reverse transcription (RT)-nested polymerase chain reaction (PCR) was developed based on existing reported and newly designed primers. A selective method was applied to evaluate domestic drinking groundwater samples. Thus, a procedure was devised to select and subsequently identify RT-nested PCR primer sets that can successfully detect and identify AiV-A from groundwater samples. The findings will contribute to developing a better monitoring system to detect AiV-A contamination in water environments such as groundwater.

Characterization and RT-PCR Detection of Turnip Mosaic Virus Isolated from Chinese Cabbage in Korea (배추에서 분리한 순무 모자이크 바이러스의 특성 및 역전사 중합효소 연쇄반응법(RT-PCR)을 이용한 검정)

  • 박원목;최설란;김수중;최승국;류기현
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.223-228
    • /
    • 1998
  • Turnip mosaic virus)TuMV-Ca) was isolated from a Chinese cabbage showing severe mosaic and black necrotic spots symptoms in Korea. The virus was identified as a strain of TuMV by its host range test, particle morphology, serology, double stranded RNA analysis. For detection of the virus, reverse transcription and polymerase chain reaction(RT-PCR) was performed with a set of 18-mer TuMV-specific primers to amplify a 876 bp DNA fragment The virus was rapidly detected from total nucleic acids of virus infected tissues as well as native viral RNA of purified virion particles by RT-PCR. Detection limit of the viral RNA by RT-PCR was 10 fg.

  • PDF

Detection of Cymbidium Mosaic Virus and Odontoglosum Ringspot Virus by ELISA and RT-PCR from Cultivated Orchids in Korea (ELISA와 RT-PCR에 의한 국내재배난에서 심비디움 모자이크 바이러스와 오돈토글로섬 윤문 바이러스이 검정)

  • 박원목;심걸보;김수중;류기현
    • Korean Journal Plant Pathology
    • /
    • v.14 no.2
    • /
    • pp.130-135
    • /
    • 1998
  • This study was carried out to detect cymbidium mosaic potexvirus (CymMV) and odontoglossum ringspot tobamovirus (ORSV) in cultivated orchid plants in Korea. The standard double antibody sandwich enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR) were carried out for detection of the viruses in the collected orchid samples. ELISA was suitable for massive-scale diagnostic method for virus detection in orchids. RT-PCR was rapid, time-saving and reliable detective method, and detection limit data showed that RT-PCR was 103 times more sensitive than ELISA. Of the 321 individual orchids representing 5 orchids genera tested by the ELISA, CymMV and ORSV were detected in 15.6% and 22.4%, and mixed infection of the both viruses with 4.9%, respectively. Of the Cymbidium plants tested, cultivated plants showed 52.5% virus infection rate with either CymMV or ORSV and both viruses.

  • PDF

Development of reverse-transcription loop-mediated isothermal amplification assays for point-of-care testing of human influenza virus subtypes H1N1 and H3N2

  • Ji-Soo Kang;Mi-Ran Seo;Yeun-Jun Chung
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.46.1-46.7
    • /
    • 2022
  • Influenza A virus (IAV) is the most widespread pathogen causing human respiratory infections. Although polymerase chain reaction (PCR)-based methods are currently the most commonly used tools for IAV detection, PCR is not ideal for point-of-care testing. In this study, we aimed to develop a more rapid and sensitive method than PCR-based tools to detect IAV using loop-mediated isothermal amplification (LAMP) technology. We designed reverse-transcriptional (RT)-LAMP primers targeting the hemagglutinin gene. RNAs from reference H1N1 and H3N2 showed specific RT-LAMP signals with the designed primers. We optimized the reaction conditions and developed universal reaction conditions for both LAMP assays. Under these conditions, the detection limit was 50 copies for both RT-LAMP assays. There was no non-specific signal to 19 non-IAV respiratory viruses, such as influenza B virus, coronaviruses, and respiratory syncytial viruses. Regarding the reaction time, a positive signal was detected within 25 min after starting the reaction. In conclusion, our RT-LAMP assay has high sensitivity and specificity for the detection of the H1 and H3 subtypes, making it suitable for point-of-care IAV testing.