• Title/Summary/Keyword: RSS (received signal strength)

Search Result 81, Processing Time 0.023 seconds

Performance of Indoor Positioning using Visible Light Communication System (가시광 통신을 이용한 실내 사용자 단말 탐지 시스템)

  • Park, Young-Sik;Hwang, Yu-Min;Song, Yu-Chan;Kim, Jin-Young
    • Journal of Digital Contents Society
    • /
    • v.15 no.1
    • /
    • pp.129-136
    • /
    • 2014
  • Wi-Fi fingerprinting system is a very popular positioning method used in indoor spaces. The system depends on Wi-Fi Received Signal Strength (RSS) from Access Points (APs). However, the Wi-Fi RSS is changeable by multipath fading effect and interference due to walls, obstacles and people. Therefore, the Wi-Fi fingerprinting system produces low position accuracy. Also, Wi-Fi signals pass through walls. For this reason, the existing system cannot distinguish users' floor. To solve these problems, this paper proposes a LED fingerprinting system for accurate indoor positioning. The proposed system uses a received optical power from LEDs and LED-Identification (LED-ID) instead of the Wi-Fi RSS. In training phase, we record LED fingerprints in database at each place. In serving phase, we adopt a K-Nearest Neighbor (K-NN) algorithm for comparing existing data and new received data of users. We show that our technique performs in terms of CDF by computer simulation results. From simulation results, the proposed system shows that a positioning accuracy is improved by 8.6 % on average.

Efficient Kernel Based 3-D Source Localization via Tensor Completion

  • Lu, Shan;Zhang, Jun;Ma, Xianmin;Kan, Changju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.206-221
    • /
    • 2019
  • Source localization in three-dimensional (3-D) wireless sensor networks (WSNs) is becoming a major research focus. Due to the complicated air-ground environments in 3-D positioning, many of the traditional localization methods, such as received signal strength (RSS) may have relatively poor accuracy performance. Benefit from prior learning mechanisms, fingerprinting-based localization methods are less sensitive to complex conditions and can provide relatively accurate localization performance. However, fingerprinting-based methods require training data at each grid point for constructing the fingerprint database, the overhead of which is very high, particularly for 3-D localization. Also, some of measured data may be unavailable due to the interference of a complicated environment. In this paper, we propose an efficient kernel based 3-D localization algorithm via tensor completion. We first exploit the spatial correlation of the RSS data and demonstrate the low rank property of the RSS data matrix. Based on this, a new training scheme is proposed that uses tensor completion to recover the missing data of the fingerprint database. Finally, we propose a kernel based learning technique in the matching phase to improve the sensitivity and accuracy in the final source position estimation. Simulation results show that our new method can effectively eliminate the impairment caused by incomplete sensing data to improve the localization performance.

Localization of primary user for cognitive radios based on estimation of path-loss exponent (인지무선시스템을 위한 전송 손실 지수 추정 기반의 기 사용자 위치 검출 기법)

  • Anh, Hoang;Koo, Insoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.55-63
    • /
    • 2013
  • In cognitive radio networks, acquirement of position information of primary user is very important to secondary network since localization information of primary users can be utilized for improving the spectrum efficiency of secondary network and for avoiding harmful interference to primary users by using proper power control. Among various location methods, Received Signal Strength (RSS)-based localization has been widely used for distance measurements in the location detection process despite its inherent inaccuracy because it can be easily implemented without any additional hardware cost. In the RSS-based localization, the distance is measured by the received signal strength, and distance error can be caused by many factors such as fading, shadowing and obstacle between two nodes. In the paper, therefore we propose a localization scheme based on estimation of path-loss exponent to localize the location of primary users more accurately. Through simulations, it is shown that the proposed scheme can provide less localization error and interference rate to primary users than other schemes.

Bayesian Filter-Based Mobile Tracking under Realistic Network Setting (실제 네트워크를 고려한 베이지안 필터 기반 이동단말 위치 추적)

  • Kim, Hyowon;Kim, Sunwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1060-1068
    • /
    • 2016
  • The range-free localization using connectivity information has problems of mobile tracking. This paper proposes two Bayesian filter-based mobile tracking algorithms considering a propagation scenario. Kalman and Markov Chain Monte Carlo (MCMC) particle filters are applied according to linearity of two measurement models. Measurement models of the Kalman and MCMC particle filter-based algorithms respectively are defined as connectivity between mobiles, information fusion of connectivity information and received signal strength (RSS) from neighbors within one-hop. To perform the accurate simulation, we consider a real indoor map of shopping mall and degree of radio irregularity (DOI) model. According to obstacles between mobiles, we assume two types of DOIs. We show the superiority of the proposed algorithm over existing range-free algorithms through MATLAB simulations.

A RSS-Based Localization Method Utilizing Robust Statistics for Wireless Sensor Networks under Non-Gaussian Noise (비 가우시안 잡음이 존재하는 무선 센서 네트워크에서 Robust Statistics를 활용하는 수신신호세기기반의 위치 추정 기법)

  • Ahn, Tae-Joon;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.23-30
    • /
    • 2011
  • In the wireless sensor network(WSN), the detection of precise location of sensor nodes is essential for efficiently utilizing the sensing data acquired from sensor nodes. Among various location methods, the received signal strength (RSS) based localization scheme is mostly preferable in many applications since it can be easily implemented without any additional hardware cost. Since the RSS localization method is mainly effected by radio channel between two nodes, outlier data can be included in the received signal strength measurement specially when some obstacles move around the link between nodes. The outlier data can have bad effect on estimating the distance between two nodes such that it can cause location errors. In this paper, we propose a RSS-based localization method using Robust Statistic and Gaussian filter algorithm for enhancing the accuracy of RSS-based localization. In the proposed algorithm, the outlier data can be eliminated from samples by using the Robust Statistics as well as the Gaussian filter such that the accuracy of localization can be achieved. Through simulation, it is shown that the proposed algorithm can increase the accuracy of localization and is more robust to non gaussian noise channels.

Multi-directional DRSS Technique for Indoor Vehicle Navigation (실내 차량 내비게이션을 위한 다방향 DRSS 기술)

  • Kim, Seon;Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.936-942
    • /
    • 2022
  • While indoor vehicle navigation is an essential component in large-scale parking garages of major cities, technical limitations and challenging propagation environments considerably degrade the accuracy of existing localization techniques. This paper proposes a proximity detection scheme using low-cost beacons where a handheld mobile device within a moving vehicle autonomously detects its approximate position and moving direction by only observing Received Signal Strength (RSS) values of beacon signals. The proposed approach essentially exploits the differential RSS technique of multi-directional beams to reduce the impact of the environment, vehicle, and mobile device. A low-cost multi-directional beacon prototype is developed using Bluetooth technology. The localization performance is evaluated using 96 beacons in an underground parking garage within an area of 394.8m×304.3m. Experimental results show that the 90th percentile of the average proximity detection error is 0.8m. Furthermore, our proposed scheme provides robust proximity detection performance with various vehicles and mobile devices.

Location Estimation Enhancement Using Space-time Signal Processing in Wireless Sensor Networks: Non-coherent Detection

  • Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.269-275
    • /
    • 2012
  • In this paper, we proposed a novel location estimation algorithm based on the concept of space-time signature matching in a moving target environment. In contrast to previous fingerprint-based approaches that rely on received signal strength (RSS) information only, the proposed algorithm uses angle, delay, and RSS information from the received signal to form a signature, which in turn is utilized for location estimation. We evaluated the performance of the proposed algorithm in terms of the average probability of error and the average error distance as a function of target movement. Simulation results confirmed the effectiveness of the proposed algorithm for location estimation even in moving target environment.

Pedestrian Positioning Method using Multi-Level Transmission Signal Strength (다단계 전송 신호 강도 기술을 이용한 보행자 위치 측정 방법)

  • Lee, Myung-Su;Kim, Ju-Won;Lee, Sang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.124-131
    • /
    • 2015
  • In this paper, we proposed indoor positioning system using RSS(Received Signal Strength) positioning method and TSS(Transmission Signal Strength). The main point in the paper is to improve reliability of accuracy positioning with the area recognition algorithm and probabilistic algorithm, which can be effectively used indoor. In the test in 1-dimensional or 2-dimensional spaces, also we checked effective positioning system considered environment of propagation that is changed by reflection, refraction and multipath in according to space form. It is necessary to find place where urgent situation happen and quickly to respond the situation for patients or the weak. Therefore, we expect the positioning system proposed can apply to the field of traffic IT.

Beacon Node Based Localization Algorithm Using Received Signal Strength(RSS) and Path Loss Calibration for Wireless Sensor Networks (무선 센서 네트워크에서 수신신호세기와 전력손실지수 추정을 활용하는 비콘 노드 기반의 위치 추정 기법)

  • Kang, Hyung-Seo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • In the range-based localization, the localization accuracy will be high dependent on the accuracy of distance measurement between two nodes. The received signal strength(RSS) is one of the simplest methods of distance measurement, and can be easily implemented in a ranging-based method. However, a RSS-based localization scheme has few problems. One problem is that the signal in the communication channel is affected by many factors such as fading, shadowing, obstacle, and etc, which makes the error of distance measurement occur and the localization accuracy of sensor node be low. The other problem is that the sensor node estimates its location for itself in most cases of the RSS-based localization schemes, which makes the sensor network life time be reduced due to the battery limit of sensor nodes. Since beacon nodes usually have more resources than sensor nodes in terms of computation ability and battery, the beacon node based localization scheme can expand the life time of the sensor network. In this paper, therefore we propose a beacon node based localization algorithm using received signal strength(RSS) and path loss calibration in order to overcome the aforementioned problems. Through simulations, we prove the efficiency of the proposed scheme.

Kernel Fisher Discriminant Analysis for Indoor Localization

  • Ngo, Nhan V.T.;Park, Kyung Yong;Kim, Jeong G.
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • In this paper we introduce Kernel Fisher Discriminant Analysis (KFDA) to transform our database of received signal strength (RSS) measurements into a smaller dimension space to maximize the difference between reference points (RP) as possible. By KFDA, we can efficiently utilize RSS data than other method so that we can achieve a better performance.