• Title/Summary/Keyword: ROS1

Search Result 1,810, Processing Time 0.022 seconds

A phylogenetic study of Korean Iris L. based on plastid DNA (psbA-trnH, trnL-F) sequences (Plastid DNA (psbA-trnH, trnL-F)의 염기서열에 의한 한국산 붓꽃속(Iris L.)의 계통분류학적 연구)

  • Lee, HyunJung;Park, SeonJoo
    • Korean Journal of Plant Taxonomy
    • /
    • v.43 no.3
    • /
    • pp.227-235
    • /
    • 2013
  • Molecular phylogenetic studies were conducted to evaluate taxonomic identities and relationships among 16 species of the korean genus Iris L. Korean Iris was grouped by five clades. Series Laevigatae, Tripetalae, Laevigatae and Sibiricae was included to Clade I. Series Chinensis, and Easatae was composed to Clade II. Series Chinensis was included to Clade III. Series Chinensis was composed to Clade IV. Series Crossiris, Pumilae and Pardanthopsis was included to Clade V. Iris dichotoma, I. mandshurica and I. tectorum formed one clade, and it was located mostly in the basal group. I. minutiaurea and I. koreana was not formed independent clade, so it is not clear between them about taxonomic identities. Iris tectorum was established taxonomic system by Series Cossiris in Subgenus Crossiris. Series Chinensis (I. odaesanensis, I. minutiaurea, I. koreana, I. rossii var. latifoia, and I. rossii) was distinguished is clear by Series Chinensis (I. odaesanensis, I. minutiaurea and I. koreana) and Series Chinensis (I. rossii var. latifoia and I. rossii). The Genus Iris was divided into four subgenus (Limniris, Crossiris, Iris and Pardanthopsis). We thought that evolved to subgenus Limniris in subgenus Crossiris, iris and Pardanthopsis.

Sprouted Black Rice Oligopeptide Induces Expression of Hyaluronan Synthase in HaCaT Keratinocytes and Improves Skin Elasticity (발아 검은쌀 올리고펩타이드의 각질형성세포에서 Hyaluronan Synthase 발현과 피부 탄력 개선 효과)

  • Sim, Gwan-Sub;Lee, Dong-Hwan;Kim, Jin-Hwa;Lee, Bum-Chun;Ahn, Sung-Kwan;Choe, Tae-Boo;Pyo, Hyeong-Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.1 s.55
    • /
    • pp.7-15
    • /
    • 2006
  • In this study, the effect of oligopeptide ($Oligosproutin^{(R)}$) from sprouted black rice was evaluated for possible improvement in skin elasticity. We examined the changes in gene expression on oligopeptide-treated HaCaT cells using DNA microarray analysis. As a result, oligopeptide treatment showed a differential expression ratio of more than 2-fold : 745 genes were activated and 1011 genes were repressed. One of the most interesting findings is a 2-fold increase in hyaluronan synthase 2 (HAS 2) gene expression by oligopeptide. We also found that oligopeptide increased cell proliferation, HAS2 mRNA expression and intracellular ROS scavenging activity in HaCaT cells. A human clinical study which oil-in-water emulsion with oligopeptide was topically applied showed significant increase in skin elasticity. These results suggest that the sprouted black rice oligopeptide ($Oligosproutin^{(R)}$) can be effective anti-aging ingredient for cosmetics.

Pyracantha Extract Acts as an Antioxidant Agent to Support Porcine Parthenogenetic Embryo Development In Vitro (돼지 단위 발생 난자의 체외 발달에 있어서 피라칸타 추출액의 처리 효과)

  • Min, Sung-Hun;Yeon, Ji-Yeong;Kim, Jin-Woo;Park, Soo-Yong;Lee, Yong-Hee;Kang, Sun-Chul;Koo, Deog-Bon
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.243-250
    • /
    • 2013
  • Pyracantha is a genus of thorny evergreen large shrubs in the family of Rosaceae, with common names Firethorn or Pyracantha. It's extract has also been used in cosmetics as a skin-whitening agent and functioning through tyrosinase inhibition. Recent studies have shown that pyracantha extract possesses antioxidant activities and may significantly improve lipoprotein metabolism in rats. Although the mode of action of Pyracantha extract is not fully understood, a strong relationship was observed between antioxidant and apoptosis in some types of cells. Thus, the aim of this study was to evaluated the effect of pyracantha extract on blastocysts formation and their quality of the porcine parthenogenetic embryos. After parthenogenetic activation by chemicals, presumptive porcine parthenogenetic embryos were cultured in PZM-3 medium supplemented with extracts of pyracantha leaf, stalk and root for 6 day (1, 5 and $10{\mu}g/ml$, respectively). In our results, the frequency of blastocyst formation in pyracantha root extract ($5{\mu}g/ml$) treated group had increased that of other groups. Furthermore, blastocysts derived from pyracantha root extract ($5{\mu}g/ml$) treated group had increased the total cell numbers and reduced apoptotic index. Blastocyst development was significantly improved in the pyracantha root extract ($5{\mu}g/ml$) treated group when compared with the $H_2O_2$ treated group (p<0.05). Subsequent evaluation of the intracellular levels of ROS in pyracantha root extract ($5{\mu}g/ml$) treated groups under $H_2O_2$ induced oxidative stress were decreased (p<0.05). In conclusion, our results indicate that treatment of pyracantha root extract may improve in vitro development of porcine parthenogenetic embryos through its antioxidative and antiapoptotic effects.

Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants

  • Hong, Jeum Kyu;Kang, Su Ran;Kim, Yeon Hwa;Yoon, Dong June;Kim, Do Hoon;Kim, Hyeon Ji;Sung, Chang Hyun;Kang, Han Sol;Choi, Chang Won;Kim, Seong Hwan;Kim, Young Shik
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.386-396
    • /
    • 2013
  • Reactive oxygen species (ROS) generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide ($H_2O_2$) and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion ($O_2{^-}$) and $H_2O_2$ was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of $H_2O_2$ and sodium nitroprusside (SNP) nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both $H_2O_2$ and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by $10^6$ and $10^7$ cfu/ml of R. solanacearum. $H_2O_2$- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative 'area under the disease progressive curve (AUDPC)' was calculated to compare disease protection by $H_2O_2$ and/or SNP with untreated control. Neither $H_2O_2$ nor SNP protect the tomato seedlings from the bacterial wilt, but $H_2O_2$ + SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that $H_2O_2$ and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents.

Resistance to Reactive Oxygen Species and Antioxidant Activities of Some Strains of Lactic Acid Bacteria from the Mustard Leaf Kimchi (갓김치에서 분리된 유산균의 활성산소종에 대한 저항성과 항산화 활성)

  • Lim, Sung-Mee
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.375-382
    • /
    • 2010
  • In present study, five strains of Lactobacillus acidophilus GK20, Lactobacillus brevis GK55, Lactobacillus paracasei GK74, Lactobacillus plantarum GK81, and Leuconostoc mesenteroides GK104 isolated from the mustard leaf kimchi were investigated for resistance to reactive oxygen species (ROS) and antioxidant activity. L. acidophilus GK20, L. brevis GK55, L. paracasei GK74, and L. plantarum GK81 were resistant to hydrogen peroxide (0.5 mM), showing a survival rate of 50% or more. In particular, L. acidophilus GK20 and L. paracasei GK74 were the most superoxide anions-resistant and L. paracasei GK74 and L. plantarum GK81 were most likely survive hydroxyl radicals. Meanwhile, the intracellular cell-free extract (ICFE) from L. plantarum GK81 exhibited significantly higher DPPH radical scavenging values ($96.4{\pm}2.8%$) than the intact cells (IC). The ICFE of L. plantarum GK81 showed the highest superoxide radical scavenging ability and chelating activity for $Fe^{2+}$ ions among the 5 lactic acid bacteria (LAB) tested, and IC and ICFE from L. plantarum GK81 demonstrated excellent reducing activity, which was higher than those of BHA and vitamin C as a positive control.

Antioxidative activities of Artemisia capillaris-Fermented Hericium erinaceum Mycelium (인진쑥 노루궁뎅이 버섯균사체 발효물의 항산화 활성)

  • Kim, Seung-Sub;Kyeong, Inn-Goo;Lee, Mi-La;Kim, Dong-Goo;Shin, Ji-Young;Yang, Jin-Yi;Lee, Gwang-Ho;Eum, Won-Sik;Kang, Jung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.719-730
    • /
    • 2014
  • The hot water extract from Artemisia capillaris fermented with Hericium erinaceum mycelium (AC-HE) were assessed for the protection against oxidative modification of biological macromolecules and cell death. Antioxidant activity of AC-HE evaluated using 2,2-diphenyl-1-picrylhydrazyl radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical and peroxyl radical scavenging assays. AC-HE showed 61.73% DPPH radical scavenging activity at $500{\mu}g/mL$, 97.39% ABTS radical scavenging activity at $250{\mu}g/mL$, and 44.18% peroxyl radical scavenging activity at $100{\mu}g/mL$. AC-HE were shown to significantly inhibited DNA strand breakage induced by peroxyl radical. AC-HE also prevented peroxyl radical-mediated human serum albumin modification. AC-HE effectively inhibited $H_2O_2$ induced cell death and significantly increased of the 11.47% cell survival at $100{\mu}g/mL$. AC-HE also decreased intracellular reactive oxygen species (ROS) levels in $H_2O_2$-treated cells. The results suggested that AC-HE can contribute to antioxidant and protected cells from oxidative stress-induced cell injury.

Study on Biochemical Pollutant Markers for Diagnosis of Marine Pollution II. Changes in Oxygen Radicals and Their Scavenger Enzymes of the Flounder(Paralichthys olivaceus) in the Yellow Sea (해양오염의 진단을 위한 생화학적 오염지표에 관한 연구 II. 황해산 넙치(Paralichthys olivaceus)의 산소라디칼 및 제거효소의 변화)

  • Moon, Young-Sil;Kim, Dong-Woo;Choi, Jin-Ho;Park, Chung-Kil;Yang, Dong-Beom
    • Journal of Life Science
    • /
    • v.7 no.1
    • /
    • pp.10-16
    • /
    • 1997
  • This study was designed as a part of efforts to investigate the biochemical pollutant markers for diagnosis of marine pollutions by changes in oxygen radicals and their scavenger enzymes of the flounder (Paralichthys olivaceus)in Yellow Sea of Kores. Protein contents in brian and muscle of cultured flounder in Yellow Sea were remarkably lower(30-45% and 25-45%, respectively) than those of wild flounders in Pohang(control) of East Sea. Lipid peroxide(LPO) levels in serum of cultured and wild flounders in Yellow Sea were significanltly higher (30-80% and 125-145%, respectively)than those of wild flounder in Pohang. Hydroxide radical formations and superoxide dismutase(SOD) activities in serum of cultured flounders in Yellow Sea were significantly 15-30% and 15-35% lower than those of wild flounders in Pohang, but glutathione peroxidase (GSHPx) activities in brain of cultured flounders in Yellow Sea were significantly 15-25% higher than those of wild flounders in Pohang. It is believed that significantly decreases of protein contents in brain anad muscle, remakable increases of malondialdehyde(LPO) in serum and glutathione peroxidase (GSHPx)in brain of cultured flounders of Yellow Sea may be used as a biochemical pollutant markers for diagnosis of marine pollutions.

  • PDF

Cytotoxic and Antioxidant Activities of Abalone (Haliotis discus hannai) Extracts (전복 용매 추출물의 세포독성과 항산화 활성)

  • Lim, Sun Young
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.737-742
    • /
    • 2014
  • The objective of this study was to investigate the fatty acid composition of raw and dried abalone (Haliotis discus hannai) and to determine the effect of abalone extracts on cytotoxic activity and anti-oxidant properties. Dried abalone was extracted with acetone/methylene chloride (A+M) and methanol (MeOH), and the extracts were fractionated using n-hexane, 85% aq. methanol (MeOH), butanol (BuOH), and water. Cytotoxic activity against HT-29 cancer cell lines was determined using the 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. Antioxidant activity was measured using a fluorescence sensitive dye, 2'-7' dichlorofluorescein-diacetate (DCFH-DA). The fatty acid composition of dried abalone was higher (22:6n-3) than that of raw abalone, and it had a lower percentage of 20:4n-6 than raw abalone. Analysis of cell viability showed that the crude extract treatments and fractions were cytotoxic, suppressing the growth of HT-29 cancer cell lines (p<0.05). The A+M extract showed a higher cytotoxic effect on the growth of HT-29 cells compared to the MeOH extract. Among the fractions, the 85% aq. MeOH fraction showed the strongest cytotoxicity against the growth of HT-29 cells. The highest activity in terms of scavenging reactive oxygen species (ROS) was likewise obtained with the use of 85% aq. MeOH. Our results suggest that the 85% aq. MeOH fraction has a potent inhibitory effect on the proliferation of human cancer cells.

Oxidative Stress in C100 Cells Induced by Combined Treatmentof Benzo(a)pyrene and/or 2,3,7,8-Tetrachlorodibenzo-p-dioxin(TCDD)

  • Bae, Mi-Ok;Choi, Kyung-Ho;Lee, Hu-Jang;Kim, Hyun-Woo;Kim, Jun-Sung;Hwang, Soon-Kyung;Park, Jin-Hong;Cho, Hyun-Sun;Cho, Myung-Haing
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.3
    • /
    • pp.379-387
    • /
    • 2004
  • When an organism is exposed to various toxicants chronically, reactive oxygen species(ROS) are accumulated and eventually result in several biological effects from gene expression to cell death. In the present study we investigated the oxidative damage of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin(TCDD) and/or benzo(a)pyrene (B(a)P) in C100 cells. C100 cells treated with TCDD(30 nM) and B(a)P($3{\mu}M$) underwent diverse oxidative stress as determined through thiobarbituric acid-reactive substances(TBARS) formation, DNA fragmentation, DNA single strand break(SSB) assay, immunohistochemical staining of 8-hydroxy-2'-deoxyguanosine(8-OHdG), and mRNA expressions of antioxidant enzymatic genes such as Cu/Zn-SOD gene, GPx(glutathione peroxidase 5) gene, and catalase gene. Lipid peroxidation in C100 cells was determined through measuing the formation of TBARS. For theat, the cells were pretreated with TCDD(30 nM) and/or B(a)P($3{\mu}M$) for 0.5, 1, 2 and 4 days. TBARS formation was increased in TCDD(30 nM) and B(a)P($3{\mu}M$) and mixture($30nM\;TCDD+3{\mu}M\;B(a)P$) and positive control treatment groups comparing to the controls. Mixture treatment induced more DNA fragmentation than the single treatment group at day 6. Also, SSB in all treatment groups was clearly observed when compared with the negative control group. As with the expression of antioxidant enzyme, GPx 5mRNA, B(a)P alone and mixture($30nM\;TCDD+3{\mu}M\;B(a)P$) treatment were higher comparing to those of the negative control and TCDD treatment groups. Our results suggest that exposure of C100 cells to mixture of TCDD and B(a)P leads to significant oxidative damage comparing to the exposures to the individual chemicals. Mechanisms of action are discussed. Additional studies are needed to elucidate the detailed mechanism of mixture-induced toxicity.

Dieckol Attenuates Microglia-mediated Neuronal Cell Death via ERK, Akt and NADPH Oxidase-mediated Pathways

  • Cui, Yanji;Park, Jee-Yun;Wu, Jinji;Lee, Ji Hyung;Yang, Yoon-Sil;Kang, Moon-Seok;Jung, Sung-Cherl;Park, Joo Min;Yoo, Eun-Sook;Kim, Seong-Ho;Ahn Jo, Sangmee;Suk, Kyoungho;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.219-228
    • /
    • 2015
  • Excessive microglial activation and subsequent neuroinflammation lead to synaptic loss and dysfunction as well as neuronal cell death, which are involved in the pathogenesis and progression of several neurodegenerative diseases. Thus, the regulation of microglial activation has been evaluated as effective therapeutic strategies. Although dieckol (DEK), one of the phlorotannins isolated from marine brown alga Ecklonia cava, has been previously reported to inhibit microglial activation, the molecular mechanism is still unclear. Therefore, we investigated here molecular mechanism of DEK via extracellular signal-regulated kinase (ERK), Akt and nicotinamide adenine dinuclelotide phosphate (NADPH) oxidase-mediated pathways. In addition, the neuroprotective mechanism of DEK was investigated in microglia-mediated neurotoxicity models such as neuron-microglia co-culture and microglial conditioned media system. Our results demonstrated that treatment of anti-oxidant DEK potently suppressed phosphorylation of ERK in lipopolysaccharide (LPS, $1{\mu}g/ml$)-stimulated BV-2 microglia. In addition, DEK markedly attenuated Akt phosphorylation and increased expression of $gp91^{phox}$, which is the catalytic component of NADPH oxidase complex responsible for microglial reactive oxygen species (ROS) generation. Finally, DEK significantly attenuated neuronal cell death that is induced by treatment of microglial conditioned media containing neurotoxic secretary molecules. These neuroprotective effects of DEK were also confirmed in a neuron-microglia co-culture system using enhanced green fluorescent protein (EGFP)-transfected B35 neuroblastoma cell line. Taken together, these results suggest that DEK suppresses excessive microglial activation and microglia-mediated neuronal cell death via downregulation of ERK, Akt and NADPH oxidase-mediated pathways.