• Title/Summary/Keyword: ROS Generation

Search Result 611, Processing Time 0.024 seconds

Shikonin Induces Apoptotic Cell Death via Regulation of p53 and Nrf2 in AGS Human Stomach Carcinoma Cells

  • Ko, Hyeonseok;Kim, Sun-Joong;Shim, So Hee;Chang, HyoIhl;Ha, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.501-509
    • /
    • 2016
  • Shikonin, which derives from Lithospermum erythrorhizon, has been traditionally used against a variety of diseases, including cancer, in Eastern Asia. Here we determined that shikonin inhibits proliferation of gastric cancer cells by inducing apoptosis. Shikonin's biological activity was validated by observing cell viability, caspase 3 activity, reactive oxygen species (ROS) generation, and apoptotic marker expressions in AGS stomach cancer cells. The concentration range of shikonin was 35-250 nM with the incubation time of 6 h. Protein levels of Nrf2 and p53 were evaluated by western blotting and confirmed by real-time PCR. Our results revealed that shikonin induced the generation of ROS as well as caspase 3-dependent apoptosis. c-Jun-N-terminal kinases (JNK) activity was significantly elevated in shikonin-treated cells, thereby linking JNK to apoptosis. Furthermore, our results revealed that shikonin induced p53 expression but repressed Nrf2 expression. Moreover, our results suggested that there may be a co-regulation between p53 and Nrf2, in which transfection with siNrf2 induced the p53 expression. We demonstrated for the first time that shikonin activated cell apoptosis in AGS cells via caspase 3- and JNK-dependent pathways, as well as through the p53-Nrf2 mediated signal pathway. Our study validates in partly the contribution of shikonin as a new therapeutic approaches/agent for cancer chemotherapy.

Protective Effects of Chongmyunggongjin-dan on H2O2-induced C6 Glial Cell Death (H2O2로 유발된 C6 신경교세포 사멸에 대한 총명공진단의 보호 효과)

  • Hwang, Gyu-sang;Shin, Yong-jeen
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.1
    • /
    • pp.44-58
    • /
    • 2020
  • Objectives: This study was conducted to identify the protective effects of Chongmyunggongjin-dan (CMGJD) on Hydrogen peroxide (H2O2)-induced apoptosis mechanisms in C6 glial cells. Method: We used CMGJD after distilled water extraction, filtration, and lyophilization. The ROS scavenging effect was examined by fluorescence microscopy. Expression levels of proteins related to ROS generation were investigated by western blotting. Functional changes in organelles related to Reactive oxygen species (ROS) generation were investigated by immunoblotting and by verifying expression level of relevant enzymes. Results: The CMGJD extract protected the cells against H2O2-induced morphological changes and DNA fragmentation, inhibited the increase of Heme_oxygenase-1(HO-1) and the decrease in catalase, protected against the loss of mitochondrial membrane potential, inhibited disturbances of lysosomal function, and induced an increase in peroxisomes. Conclusion: CMGJD was confirmed to have a protective effect on H2O2-induced C6 glial cell death possibly by blocking the pathways causing damage to subcellular organelles, such as mitochondria, lysosomes, and peroxisomes. We assume that CMGJD will be effective for the prevention and treatment of ischemic stroke in a clinical environment.

Methylmercury Toxicity Is Induced by Elevation of Intracellular $Ca^{2+}$ through Activation of Phosphatidylcholine-Specific Phospholipase C

  • Chin, Mi-Reyoung;Kang, Mi-Sun;Jeong, Ju-Yeon;Jung, Sung-Yun;Seo, Ji-Heui;Kim, Dae-Kyong
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.13-13
    • /
    • 2003
  • Methylmercury (MeHg) is a ubiquitous environmental toxicant that can be exposed to humans by ingestion of contaminated food including fish and bread. MeHg has been suggested to exert its toxicity through its high reactivity to thiols, generation of arachidonic acid and reactive oxygen species (ROS), and elevation of intracellular $Ca^{2+}$ levels ([$Ca^{2+}$$_{i}$). However, the precise mechanism has not been fully defined. Here we show that phosphatidylcholine-specific phospholipase C (PC-PLC) is a critical pathway for MeHg-induced toxicity. MeHg activated the acidic form of sphingomyelinase (A-SMase) and group IV cytosolic phospholipase $A_2$ ($cPLA_2$) downstream of PC-PLC, but these enzymes as well as protein kinase C were not linked to MeHg's toxicity. Furthermore, MeHg produced ROS, which did not cause the toxicity. However, D6O9, an inhibitor of PC-PLC, significantly reversed the toxicity in a time- and dose-dependent manner in MDCK and SH-5YSY cells. Addition of EGTA to culture media resulted in partial decrease of [$Ca^{2+}$$_{i}$ and partially blocked cell death. In contrast, D609 completely prevented cell death with parallel decreases in diacylglycerol and [$Ca^{2+}$$_{i}$. Together, our findings indicated that MeHg-induced toxicity was caused by elevation of [$Ca^{2+}$]$_{i}$ through activation of PC-PLC. The toxicity was not attributable to the signaling pathways such as $cPLA_2$, A-SMase, and PKC, or to the generation of ROS.

  • PDF

Protective Effect of Panax ginseng Ethanol Extracts Against Bisphenol A (BPA) in Mouse Male Germ Cells (마우스 수컷 생식세포에서 비스페놀 A에 대한 인삼 에탄올 추출물의 보호 효과)

  • Kim, Hyung Don;Shon, Sang Hyun;Kim, Jin Seong;Lee, Hee Jung;Park, Chun Geun;Ahn, Young Sup;Lee, Sang Won;Kim, Young Ock
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.2
    • /
    • pp.138-143
    • /
    • 2015
  • This study was carried out to evaluate the preventive effect of three forms of Korean ginseng roots (fresh, white and red) against bisphenol A (BPA) toxicity in mouse male germ cells (GC-2spd, TM3, TM4). ROS (reactive oxygen species) generation were measured by DCF-DA (2',7'-dichlorohydrofluorescein diacetate) assay. Also, semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) was performed to quantify the mRNA expression levels of apoptosis-related genes, Bax (pro-apoptotic gene) and Bcl2 (anti-apoptotic gene). ROS generation was increased by $50{\mu}M$ BPA, but definitely decreased by treatment with Korean ginseng extracts (fresh, white and red) in mouse male germ cells. In especial, Korean fresh ginseng extract reduced significantly ROS production to normal control. In addition, Korean fresh and white ginseng extracts suppressed the apoptosis of mouse male germ cells by fine-tuning mRNA levels of apoptotic genes changed by BPA. In general, Korean fresh ginseng extract was more effective than white ginseng extract for reducing BPA-induced oxidative stress and apoptosis in mouse male germ cells. Therefore, Korean fresh and white ginseng may help to alleviate biphenol A toxicity in mouse male germ cells.

Effect of Fermented Artemisiae Argyi Folium on Human Hepatoma Cell Line HepG2 Activity (발효 애엽(艾葉) 추출물이 인간 간암세포주 HepG2 활성에 미치는 영향)

  • Han, Hyo-Sang
    • The Korea Journal of Herbology
    • /
    • v.28 no.3
    • /
    • pp.107-113
    • /
    • 2013
  • Objective : The purpose of this study was to investigate the effect of fermented Artemisiae Argyi Folium(AAF) on some activities of human hepatoma cell, HepG2. Method : To investigate the effect of fermented Artemisiae Argyi Folium(AAF) activity on the human hepatoma cells, AAF extracts was fermented by Lactobacillus pentosus K34(AFL) and Sacchromyces cerevisiae STV89(AFS). And the effects of AFL or AFS on the activities of HepG2 cell, such as cell viability, nitric oxide(NO) production and reactive oxygen species(ROS) production, were tested. Result : Human Hepatoma Cells were incubated each for 3 hours and 24 hours. Human Hepatoma Cells treated with the extract was measured with MTT assay. Then AFL was found to be non-toxic at concentrations of 10 ug/mL(3h), 100 ug/mL(24h) or more. AFS was the same result at concentrations of more than 10 ug/mL. The extract increased ROS generation in Human Hepatoma Cells. AFL increased at concentrations of 100 ug/mL more (3h, also 10 ug/mL more) and 50 ug/mL(24h) and AFS increased both 50 ug/mL. In point of NO generation, AFL inhibited at concentrations of 10 ug/mL(3h) and 100 ug/mL(24h) more (3h, also 10 ug/mL more) and AFS also inhibited 50 ug/mL or more. Conclusion : AFL and AFS, obtained from Artemisiae Argyi Folium extracts by fermentation, reduced the NO production and increased ROS production in HepG2 cell, without cytotoxicity on HepG2 cell. The results suggested that AFL and AFS increased the immunological effects of Artemisiae Argyi Folium extracts.

Inhibitory Action of 1,3,5-Trihydroxybenzene on UVB-Induced NADPH Oxidase 4 through AMPK and JNK Signaling Pathways

  • Chaemoon Lim;Mei Jing Piao;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Dae Whan Kim;Joo Mi Yi;Yung Hyun Choi;Jin Won Hyun
    • Biomolecules & Therapeutics
    • /
    • v.32 no.4
    • /
    • pp.499-507
    • /
    • 2024
  • Specific sensitivity of the skin to ultraviolet B (UVB) rays is one of the mechanisms responsible for widespread skin damage. This study tested whether 1,3,5-trihydroxybenzene (THB), a compound abundant in marine products, might inhibit UVB radiationinduced NADPH oxidase 4 (NOX4) in both human HaCaT keratinocytes and mouse dorsal skin and explore its cytoprotective mechanism. The mechanism of action was determined using western blotting, immunocytochemistry, NADP+/NADPH assay, reactive oxygen species (ROS) detection, and cell viability assay. THB attenuated UVB-induced NOX4 expression both in vitro and in vivo, and suppressed UVB-induced ROS generation via NADP+ production, resulting in increased cell viability with decreased apoptosis. THB also reduced the expression of UVB-induced phosphorylated AMP-activated protein kinase (AMPK) and phosphorylated c-Jun N-terminal kinase (JNK). THB suppressed UVB-induced NOX4 expression and ROS generation by inhibiting AMPK and JNK signaling pathways, thereby inhibiting cellular damage. These results showed that THB could be developed as a UV protectant.

Neuroprotective Effects of Cirsium setidens, Pleurospermum kamtschaticumin, and Allium victorials Based on Antioxidant and p38 Phosphorylation Inhibitory Activities in SK-N-SH Neuronal Cells (SK-N-SH 신경세포내 항산화 효과와 p38 인산화 억제에 의한 곤드레, 누룩치 그리고 산마늘의 신경 보호 효과)

  • Chung, Mi Ja;Park, Yong Il;Kwon, Ki Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.3
    • /
    • pp.347-355
    • /
    • 2015
  • Oxidative stress is one of the key mechanisms involved in neuronal damage. Neuroprotective effects and underlying mechanisms of action of several wild vegetables, Cirsium setidens (CS), Pleurospermum kamtschaticumin (PK), and Allium victorials (AV), against oxidative stress induced by hydrogen peroxide in SK-N-SH cells were investigated. CS and AV up to $400{\mu}g/mL$ showed no detectable effects on cell viability of human SK-N-SH neuro-blastoma cells compared with control. Incubation of SK-N-SH cells with hydrogen peroxide resulted in significant induction of cell death and reaction oxygen species (ROS) production, whereas treatment of cells with CS and AV significantly reduced cell death and ROS production, respectively. Among the wild vegetables tested, CS and PK showed more effective DPPH radical scavenging activity than AV, whereas PK showed strong cytotoxicity in SK-N-SH cells compared with the control. CS showed much higher inhibitory effects on cell death and ROS generation against oxidative stress than AV. Thus, CS was selected for subsequent experiments. Ethyl acetate (EA), hexane, butanol, aqueous, and chloroform extracts from CS significantly inhibited cell death and ROS generation in SK-N-SH cells induced by oxidative stress. EA extract from CS (CS-EA) showed the highest DPPH radical-scavenging activity, intra-cellular ROS-scavenging activity, and neuroprotective effects. CS-EA attenuated apoptosis signal-regulating p38 activation by inhibiting phosphorylation. The findings suggest that CS-EA protects neuronal cells through antioxidant activity and inhibition of phosphorylation of p38 in brain neural cells.

Antioxidant Activities of Hot Water Extract from Cornus walteri Wanger against Oxidative Stress Induced by tert-Butyl Hydroperoxide in HepG2 Cells (tert-Butyl Hydroperoxide로 산화 스트레스가 유도된 HepG2 세포에서 말채나무 열수추출물의 항산화 활성)

  • Yeon, Seong Ho;Ham, Hyeonmi;Sung, Jeehye;Kim, Younghwa;Namkoong, Seulgi;Jeong, Heon-Sang;Lee, Junsoo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1525-1532
    • /
    • 2013
  • The objective of this study was to investigate the effect of hot water extract from Cornus walteri Wanger (CWE) on tert-butyl hydroperoxide (TBHP)-induced oxidative stress in HepG2 cells. Generation of reactive oxygen species (ROS), concentrations of cellular lipid peroxidation products and reduced glutathione, and antioxidant enzyme activity were used as biomakers of cellular oxidative status. Cells pretreated with CWE (25~200 ${\mu}g/mL$) showed an increased resistance to oxidative stress in a dose-dependent manner, as revealed by a higher percentage of surviving cells compared to control cells. ROS generation induced by TBHP was significantly reduced when cells were pretreated with 200 ${\mu}g/mL$ CWE for 4 h. Pretreatment with CWE (5~50 ${\mu}g/mL$) prevented the decrease in reduced glutathione and the increase in malondialdehyde and ROS evoked by TBHP in HepG2 cells. Finally, CWE pretreatments prevented the significant increase of glutathione peroxidase, catalase, glutathione reductase, and superoxide dismutase activities induced by TBHP. These results show that CWE has significant protective ability against a TBHP-induced oxidative insult and that the modulation of antioxidant enzymes by CWE may have an important antioxidant effect on TBHP-induced oxidative stress in HepG2 cells.

Lysophosphatidic Acid Stimulates SKOV-3 Cell Migration through the Generation of Reactive Oxygen Species via the mTORC2/Akt1/NOX Signaling Axis (리소포스타티드산은 SKOV-3 난소암세포의 mTORC2/Akt1/NOX 신호전달 기전을 통해 활성산소를 형성하고 이를 통해 세포의 이동을 촉진)

  • Eun Kyoung Kim;Seo Yeon Jin;Jung Min Ha;Sun Sik Bae
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.129-137
    • /
    • 2023
  • Reactive oxygen species (ROS) play an essential role in a variety of cellular physiological phenomena. The present study assessed the signaling axis that mediates the lysophosphatidic acid (LPA)-induced migration of SKOV-3 cells. Insulin-like growth factor-1 (IGF-1) stimulated SKOV-3 cell migration in a time- and dose-dependent manner. Similarly, LPA stimulated SKOV-3 cell migration and the phosphorylation of Akt in a time- and dose-dependent manner. The pharmacological inhibition of LPA receptors (LPA1/LPA3) significantly suppressed LPA-induced SKOV-3 cell migration. However, IGF-1-induced SKOV-3 cell migration was not affected by the inhibition of LPA1 and LPA3. Pharmacological inhibition of phosphoinositide 3-kinase (PI3K) or Rho-associated kinase (ROCK) significantly suppressed LPA-induced migration, whereas the inhibition of MAPK kinase (MEK) had no effect. Inhibition of PI3K or ROCK completely suppressed LPA-induced ROS generation, and suppression of nicotinamide adenine dinucleotide phosphate oxidase (NOX) or chelation of ROS by N-acetylcysteine (NAC) blocked LPA-induced SKOV-3 cell migration. LPA-induced ROS generation was suppressed by silencing Rictor or Akt1 but not Raptor or Akt2. Silencing Rictor or Akt1 significantly suppressed LPA-induced SKOV-3 cell migration, whereas silencing Raptor or Akt2 had no effect. Finally, the overexpression of the constitutively active form Akt1 (CA-Akt1) significantly enhanced the LPA-induced migration of SKOV-3 cells. Given these results, we suggest that LPA stimulates SKOV-3 cell migration by ROS generation, which is mediated by the mTORC2/Akt1/NOX signaling axis.

Antioxidant and Protective Effects of Palmul-tang on Ultraviolet B (UVB)-induced Damage in Human Keratinocytes (팔물탕의 항산화 효과와 자외선으로 유도된 각질형성세포 손상에 대한 보호효과)

  • Kim, Tae-Yeon;Bak, Jong-Phil
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.141-154
    • /
    • 2015
  • Objective : In this paper, we investigated the anti-oxidative capacities and protective effects of water extract of palmul-tang (PMT) against Ultraviolet B(UVB)-induced oxidative damage in human keratinocytes(HaCaT). Method : To evaluate the anti-oxidative activities of PMT, we measured scavenging activities on 1,1-diphenyl-2-picrylhydrazyl(DPPH) radical, hydroxyl radical, hydrogen peroxide, superoxide anion, lipid peroxidation and reducing power of PMT. To give an oxidative stress to HaCaT cells, UVB was irradiated with $40mJ/cm^2$ to HaCaT cells. To detect the protective effects of PMT against UVB, we measured cell viability, apoptotic bodies and reactive oxygen species(ROS) generation. Results : PMT showed the anti-oxidative activities by scavenging DPPH radical, hydroxyl radical, hydrogen peroxide, superoxide anion, lipid peroxidation. Also PMT showed high reducing values. The UVB-induced oxidative conditions led to the cell apoptosis. However, treatment with PMT reduced oxidative stress conditions, including inhibition of cell apoptosis and expression of ROS. Conclusion : PMT had anti-oxidative activities and exhibited protective effects against UVB on HaCaT cells. PMT would be useful for the development of cosmetics treating UVB-induced skin aging.