• 제목/요약/키워드: ROI(Region of Interest)

Search Result 480, Processing Time 0.03 seconds

Usefulness of Blood Pool Half Body in Three Phase Bone Scan in Patients with R/O Reflex Symphathetic Dystrophy Syndrome (반사성교감신경 이영양증후군 환자의 삼상 골 스캔 시 Half Body 혈액 풀 영상의 적용)

  • Lee, Moo-Seok;Lee, Hyo-Yeong;Yun, Jong-Jun;Lee, Hwa-Jin;Song, Hyeon-Seok;Park, Se-Yun;Jeong, Ji-Uk
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.105-110
    • /
    • 2010
  • Purpose: Three phase bone scan was considered sensitive in Patients with Reflex Symphathetic Dystrophy Syndrome (RSDS). Generally, three phase bone scan in the RSDS patients shows increased uptake of one side extremity joint. But three phase bone scan has been performed with flow, blood pool and delayed scan. We performed blood pool half body scan in order to investigate its usefulness. Materials and Methods: From October 2007 to September 2009, three phase bone scan (flow, blood pool, half body blood pool, delayed) was performed after injection of 750 MBq of $^{99m}Tc$-DPD in diagnosed patients with RSDS (M:F=8:7, R:L=9:6). For quantitative analysis, we obtained the count ratios of bilateral hands by drawing a region of interest (ROI) in the three phase images and compared with the count ratios of shoulders in half body blood pool and delayed images. Results: In flow images, right/left ratios were $1.09{\pm}0.53$. In blood pool images, right/left ratios were $1.13{\pm}0.47$ (hand), $1.08{\pm}0.26$ (shoulder). In delayed images, right/left ratios were $1.24{\pm}0.75$ (hand), $1.11{\pm}0.31$ (shoulder). As a result, Log of right/left counts of the others and that of shoulder blood pool image were correlated well with statistical significance (Spearman's R, p<0.005 SPSS for windows ver.12.0). Conclusion: Half body blood pool scan may be helpful in the diagnosis of patients with RSDS. Moreover, Half body blood pool scan reduced false negative and false positive rates. In order to improve agreement on interpretation of RSDS, Blood pool half body scan should be established as common criteria.

  • PDF

A Study on the Correlation between Lung Ventilation Scan using Technegas and Pulmonary Function Test in Patients with COPD (Technegas를 이용한 폐환기 검사와 폐기능 검사의 상관관계에 관한 고찰)

  • Kim, Sang-Gyu;Kim, Jin-Gu;Baek, Song-EE;Kang, Chun-Koo;Kim, Jae-Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.45-49
    • /
    • 2019
  • Purpose Lung Ventilation Scan(LVS) images directly inhaled radiation gas to evaluate lung ventilation ability. Therefore, it is influenced by various factors related to inhalation, including number of breaths, respiratory duration, respiration rate, and breathing method. In actual LVS examinations, it is difficult for objectify the patient's ability to inhale, and there is currently no known index related to inhalation. Therefore, this study confirms the correlation between counts per second(cps) in LVS and the results of pulmonary function test(PFT) and evaluate its usefulness as an objective indicator of inhalation. Materials and Methods From October 2010 to September 2018, 36 Chronic Obstructive Pulmonary Disease(COPD) patients who had both LVS and PFT were classified by severity(Mild, Moderate, Severe). LVS was performed by creating Technegas with Vita Medical's Technegas Generator and inhaling it to the patient. LVS images were acquired with Philips's Forte equipment., and PFT used Carefusion's Vmax Encore 22. The correlation between the cps measured by setting the region of interest(ROI) of both lungs on the LVS and the forced vital capacity(FVC), forced expiratory volume in one second($FEV_1$), $FEV_1/FVC$ of the results of PFT was compared and analyzed. Results We analyzed the correlation between cps of LVS using Technegas and the results of PFT by classifying COPD patients according to severity. Correlation coefficient between $FEV_1/FVC$ and cps was Severe -0.773, Moderate -0.750, and Mild -0.437. The Severe and Modulate result values were statistically significant(P<0.05) and Mild was not significant(P=0.155). On the other hand, the correlation coefficient between FVC and cps was statistically significant only in Mild and it was 0.882(P<0.05). Conclusion According to the study, we were able to analyze correlation between cps of LVS using Technegas and the results of PFT in COPD Patients. Using this result, when performing a LVS, the results of PFT can be used as an index of inhaling capacity. In addition, it is thought that it will be more effective for the operation of the exam rooms.

The Optimization of Reconstruction Method Reducing Partial Volume Effect in PET/CT 3D Image Acquisition (PET/CT 3차원 영상 획득에서 부분용적효과 감소를 위한 재구성법의 최적화)

  • Hong, Gun-Chul;Park, Sun-Myung;Kwak, In-Suk;Lee, Hyuk;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • Purpose: Partial volume effect (PVE) is the phenomenon to lower the accuracy of image due to low estimate, which is to occur from PET/CT 3D image acquisition. The more resolution is declined and the lesion is small, the more it causes a big error. So that it can influence the test result. Studied the optimum image reconstruction method by using variation of parameter, which can influence the PVE. Materials and Methods: It acquires the image in each size spheres which is injected $^{18}F$-FDG to hot site and background in the ratio 4:1 for 10 minutes by using NEMA 2001 IEC phantom in GE Discovey STE 16. The iterative reconstruction is used and gives variety to iteration 2-50 times, subset number 1-56. The analysis's fixed region of interest in detail part of image and compute % difference and signal to noise ratio (SNR) using $SUV_{max}$. Results: It's measured that $SUV_{max}$ of 10 mm spheres, which is changed subset number to 2, 5, 8, 20, 56 in fixed iteration to times, SNR is indicated 0.19, 0.30, 0.40, 0.48, 0.45. As well as each sphere's of total SNR is measured 2.73, 3.38, 3.64, 3.63, 3.38. Conclusion: In iteration 6th to 20th, it indicates similar value in % difference and SNR ($3.47{\pm}0.09$). Over 20th, it increases the phenomenon, which is placed low value on $SUV_{max}$ through the influence of noise. In addition, the identical iteration, it indicates that SNR is high value in 8th to 20th in variation of subset number. Therefore, to reduce partial volume effect of small lesion, it can be declined the partial volume effect in iteration 6 times, subset number 8~20 times, considering reconstruction time.

  • PDF

Comparison of Noise Power Spectrum Methodologies in Measurements by Using Various Electronic Portal Imaging Devices in Radiation Therapy (방사선치료시 전자포털영상장치를 이용한 잡음전력스펙트럼 방법론 측정비교)

  • Son, Soon-Yong;Choi, Kwan-Woo;Jeong, Hoi-Woun;Kwon, Kyung-Tae;Kim, Ki-Won;Lee, Young-Ah;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.99-105
    • /
    • 2016
  • The noise power spectrum (NPS) is one of the most general methods for measuring the noise amplitude and the quality of an image acquired from a uniform radiation field. The purpose of this study was to compare different NPS methodologies by using megavoltage X-ray energies. The NPS evaluation methods in diagnostic radiation were applied to therapy using the International Electro-technical Commission standard (IEC 62220-1). Various radiation therapy (RT) devices such as TrueBeam$^{TM}$(Varian), BEAMVIEW$^{PLUS}$(Siemens), iViewGT(Elekta) and Clinac$^R$ iX (Varian) were used. In order to measure the region of interest (ROI) of the NPS, we used the following four factors: the overlapping impact, the non-overlapping impact, the flatness and penumbra. As for NPS results, iViewGT(Elekta) had the higher amplitude of noise, compared to BEAMVIEW$^{PLUS}$ (Siemens), TrueBeam$^{TM}$(Varian) flattening filter, Clinac$^{R}$iXaS1000(Varian) and TrueBeam$^{TM}$(Varian) flattening filter free. The present study revealed that various factors could be employed to produce megavoltage imaging (MVI) of the NPS and as a baseline standard for NPS methodologies control in MVI.

The Effect of 131I Therapy by Taking in Laxatives (방사성요오드 치료 시 완하제 투여 효과)

  • Kil, Sang-Hyeong;LEE, Hyo-Yeong;Park, Kwang-Yeol;Jo, Kyung-Nam;Baek, Seung-Jo;Hwang, Kyo-Min;Cho, Seong-Mook;Choi, Jae-Hyeok
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.3-9
    • /
    • 2014
  • Purpose: Our goals were to evaluate the effect of high dose radioiodine treatment for thyroid cancer by taking in laxatives. Materials and Methods: Twenty patients(M:F=13:7, age $46.3{\pm}8.1\;yrs$) who underwent high dose radioiodine treatment were seperated into Group 1 taking $^{131}I$ 5,500 MBq and Group 2 with the use of laxatives after taking $^{131}I$ 5,500 MBq. The whole body was scanned 16 hours and 40 hours after taking radioactive iodines by using gamma camera, the ROIs were drawn on the gastro-intestinal tract and thigh for calculation of reduction ratio. At particular time during hospitalization, the radioactivity remaining in the body was measured in 1 meter from patient by using survey meter (RadEye-G10, Thermo Fisher Scientific, USA). Schematic presentation of an Origin 8.5.1 software was used for spatial dose rate. Statistical comparison between groups were done using independent samples t-test. P value less than 0.05 was regarded as statistically significant. Results: The reduction ratio in gastro-intestinal 16 hours and 40 hours after taking laxatives is $42.1{\pm}6.3%$ in Group 1 and $72.1{\pm}6.4%$ in Group 2. The spatial dose rate measured when discharging from hospital was $23.8{\pm}6.7{\mu}Sv/h$ in Group 1 and $8.2{\pm}2.4{\mu}Sv/h$ in Group 2. The radioactivity remaining in the body is much decreased at the patient with laxatives(P<0.05). Conclusion: The use in combination with laxatives is helpful for decreasing radioactivity remaining in the body. The radioactive contamination could be decreased at marginal individuals from patients.

  • PDF

The Effectiveness of CT and MRI Contrast Agent for SUV in 18F-FDG PET/CT Scanning (18F-FDG PET/CT 검사에서 정량분석에 관한 CT와 MRI 조영제의 효과)

  • Cha, Sangyoung;Cho, Yonggwi;Lee, Yongki;Song, Jongnam;Choi, Namgil
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.255-261
    • /
    • 2016
  • In this study, among various factors having influence on SUV, we intended to compare and analyze the change of SUV using CT(4 type) and MRI(3 type) contrast agents which are commercialized now. We used Discovery 690 PET/CT(GE) and NEMA NU2 - 1994 PET phantom as experimental equipment. We have conducted a study as follows; first, we filled distilled water to phantom about two-thirds and injected radioisotope(18F-FDG 37 MBq), contrast agent. Second, we mixed CT contrast agent with distilled water and MRI contrast agent with that water separately. And then, we stirred the fluid and filled distilled water fully not to make air bubble. In emission scan, we had 15minutes scanning time after 40 minutes mixing contrast agent with distilled water. In transmission scan, we used CT scanning and its measurement conditions were tube voltage 120 kVp, tube current 40 mA, rotation time 0.5 sec, slice thickness 3.27 mm, DFOV 30 cm. Analyzing results, we set up some ROIs in 10th, 15th, 20th, 25th, 30th slice and measured SUVmean, SUVmax. Consequently, all images mixed 3 types of MRI contrast agent with distilled water have high SUVmean as compared with pure FDG image but there was no statistical significance. In SUVmax, they have high score and there was statistical significance. And other 4 images mixed 4 types of CT contrast agent with distilled water have significance in both SUVmean and SUVmax. Attenuation correction in PET/CT has been executed through various methods to make high quality image. But we figured out that using CT and MRI contrast agents before PET/CT scanning could make distortion of image and decrease diagnostic value. In that reason, we have to sort out the priority of examination in hospital not to disturb other examination's results. Through this process, we will be able to give superior medical service to our customers.

Is Skeletonized Internal Mammary Artery Harvesting better than Pedicled Harvesting in Respect of the Sternal Blood Flow\ulcorner: An Estimation Using Bone Scan (내유동맥의 골격화 채취는 흉골로의 혈류 감소 측면에서 과연 유리한가 \ulcorner: 골주사를 이용한 평가)

  • 손국희;김영삼;김정택;윤용한;김광호;최원식;백완기
    • Journal of Chest Surgery
    • /
    • v.37 no.6
    • /
    • pp.511-516
    • /
    • 2004
  • Background: One of the theoretical advantages of skeletonized internal mammary artery harvesting in coronary artery bypass surgery is to minimize the interruption of the sternal blood flow inevitably accompanied by internal mammary harvesting. A study using bone scan is designed to determine the effects of internal mammary artery harvesting technique on the sternal blood flow. Material and Method: From April 2002 to March 2003, 27 patients out of 48 patients who underwent the isolated coronary bypass surgery were enrolled into the study. The enrolled patients underwent bone scan in the preoperative period and postoperative period respectively. Bilateral internal mammary artery was used in 8 patients (BIMA group) and single left internal mammary artery in 19 patients (LIMA group). The patients in LIMA group were divided into two groups: LlMA_skel group, in whom left internal mammary artery was harvested in skeletonized fashion (n=12), and LlMA_ped group, in whom left internal mammary artery was harvested in pedicled fashion (n=7). After the bone scan, the region of interest (ROI) was created on the left of the sternum and the mirror image with the same pixel numbers was placed on the right half of the sternum. The mean counts per pixel on the left side of the sternum was compared with those on the right side and expressed as left to right ratio (L/R ratio). Result: In LIMA group, the L/R ratio decreased from 94.6$\pm$4.1% to 87.9$\pm$6.9% (p=0.003) after the operation as compared to BIMA group, in which no change of the L/R ratio was observed. The changed of the L/R ratio in LlMA_skel group and LlMA_ped group were from 95.3$\pm$4.2% to 88.3$\pm$7.7% and from 93.4$\pm$3.9% to 87.4$\pm$5.8% respectively. The % changes in L/R ratio were -7.44 $\pm$7.08 in LIMA_skel group and -6.17$\pm$9.08 in LiMA_ped group, which did not reach the statistical difference. Conclusion: Ipsilateral sternal blood flow is interrupted by internal mammary artery harvesting as evidenced by the decrease in L/R ratio after left internal mammary artery harvesting irrespective of the harvesting techniques. Skeletonized harvesting did not show superiority in respect to sternal blood flow as compared to pedicled harvesting.

Evaluation of Proper Image Acquisition Time by Change of Infusion dose in PET/CT (PET/CT 검사에서 주입선량의 변화에 따른 적정한 영상획득시간의 평가)

  • Kim, Chang Hyeon;Lee, Hyun Kuk;Song, Chi Ok;Lee, Gi Heun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.22-27
    • /
    • 2014
  • Purpose There is the recent PET/CT scan in tendency that use low dose to reduce patient's exposure along with development of equipments. We diminished $^{18}F$-FDG dose of patient to reduce patient's exposure after setting up GE Discovery 690 PET/CT scanner (GE Healthcare, Milwaukee, USA) establishment at this hospital in 2011. Accordingly, We evaluate acquisition time per proper bed by change of infusion dose to maintain quality of image of PET/CT scanner. Materials and Methods We inserted Air, Teflon, hot cylinder in NEMA NU2-1994 phantom and maintained radioactivity concentration based on the ratio 4:1 of hot cylinder and back ground activity and increased hot cylinder's concentration to 3, 4.3, 5.5, 6.7 MBq/kg, after acquisition image as increase acquisition time per bed to 30 seconds, 1 minute, 1 minute 30 seconds, 2 minute, 2 minutes 30 seconds, 3 minutes, 3 minutes 30 seconds, 4 minutes, 4 minutes 30 seconds, 5 minutes, 5 minutes 30 seconds, 10 minutes, 20 minutes, and 30 minutes, ROI was set up on hot cylinder and back radioactivity region. We computated standard deviation of Signal to Noise Ratio (SNR) and BKG (Background), compared with hot cylinder's concentration and change by acquisition time per bed, after measured Standard Uptake Value maximum ($SUV_{max}$). Also, we compared each standard deviation of $SUV_{max}$, SNR, BKG following in change of inspection waiting time (15minutes and 1 hour) by using 4.3 MBq phantom. Results The radioactive concentration per unit mass was increased to 3, 4.3, 5.5, 6.7 MBqs. And when we increased time/bed of each concentration from 1 minute 30 seconds to 30 minutes, we found that the $SUV_{max}$ of hot cylinder acquisition time per bed changed seriously according to each radioactive concentration in up to 18.3 to at least 7.3 from 30 seconds to 2 minutes. On the other side, that displayed changelessly at least 5.6 in up to 8 from 2 minutes 30 seconds to 30 minutes. SNR by radioactive change per unit mass was fixed to up to 0.49 in at least 0.41 in 3 MBqs and accroding as acquisition time per bed increased, rose to up to 0.59, 0.54 in each at least 0.23, 0.39 in 4.3 MBqs and in 5.5 MBqs. It was high to up to 0.59 from 30 seconds in radioactivity concentration 6.7 MBqs, but kept fixed from 0.43 to 0.53. Standard deviation of BKG (Background) was low from 0.38 to 0.06 in 3 MBqs and from 2 minutes 30 seconds after, low from 0.38 to 0 in 4.3 MBqs and 5.5 MBqs from 1 minute 30 seconds after, low from 0.33 to 0.05 in 6.7 MBqs at all section from 30 seconds to 30 minutes. In result that was changed the inspection waiting time to 15 minutes and 1 hour by 4.3 MBq phantoms, $SUV_{max}$ represented each other fixed values from 2 minutes 30 seconds of acquisition time per bed and SNR shown similar values from 1 minute 30 seconds. Conclusion As shown in the above, when we increased radioactive concentration per unit mass by 3, 4.3, 5.5, 6.7 MBqs, the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the same way, in the change of inspection waiting time (15 minutes and 1 hour), we could find that the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the result of this NEMA NU2-1994 phantom experiment, we found that the minimum acquisition time per bed was 2 minutes 30 seconds for evaluating values of fixed $SUV_{max}$ and SNR even in change of inserting radioactive concentration. However, this acquisition time can be different according to features and qualities of equipment.

  • PDF

The Evaluation of Difference according to Image Scan Duration in PET Scan using Short Half-Lived Radionuclide (단 반감기 핵종을 이용한 PET 검사 시 영상 획득 시간에 따른 정량성 평가)

  • Hong, Gun-Chul;Cha, Eun-Sun;Kwak, In-Suk;Lee, Hyuk;Park, Hoon;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.102-107
    • /
    • 2012
  • Purpose : Because of the rapid physical decay of the short half-lived radionuclide, counting of event for image is very limited. In this reason, long scan duration is applied for more accurate quantitative analysis in the relatively low sensitive examination. The aim of this study was to evaluate the difference according to scan duration and investigate the resonable scan duration using the radionuclide of 11C and 18F in PET scan. Materials and Methods : 1994-NEMA Phantom was filled with 11C of $30.08{\pm}4.22MBq$ and 18F of $40.08{\pm}8.29MBq$ diluted with distilled water. Dynamic images were acquired 20frames/1minute and static image was acquired for 20minutes with 11C. And dynamic images were acquired 20frames/2.5minutes and static image was acquired for 50minutes with 18F. All of data were applied with same reconstruction method and time decay correction. Region of interest (ROI) was set on the image, maximum radioactivity concentration (maxRC, kBq/mL) was compared. We compared maxRC with acquired dynamic image which was summed one bye one to increase the total scan duration. Results : maxRC over time of 11C was $3.85{\pm}0.45{\sim}5.15{\pm}0.50kBq/mL$ in dynamic image, and static image was $2.15{\pm}0.26kBq/mL$. In case of 18F, the maxRC was $9.09{\pm}0.42{\sim}9.48{\pm}0.31kBq/mL$ in dynamic image and $7.24{\pm}0.14kBq/mL$ in static. In summed image of 11C, as total scan duration was increased to 5, 10, 15, 20minutes, the maxRC were $2.47{\pm}0.4$, $2.22{\pm}0.37$, $2.08{\pm}0.42$, $1.95{\pm}0.55kBq/mL$ respectively. In case of 18F, the total scan duration was increased to 12.5, 25, 37.5, and 50minutes, the maxRC were $7.89{\pm}0.27$, $7.61{\pm}0.23$, $7.36{\pm}0.21$, $7.31{\pm}0.23kBq/mL$. Conclusion : As elapsed time was increased after completion of injection, the maxRC was increased by 33% and 4% in dynamic study of 11C and 18F respectively. Also the total scan duration was increased, the maxRC was reduced by 50% and 20% in summed image of 11C and 18F respectively. The percentage difference of each result is more larger in study using relatively shorter half-lived radionuclide. It appears that the accuracy of decay correction declined not only increment of scan duration but also increment of elapsed time from a starting point of acquisition. In study using 18F, there was no big difference so it's not necessary to consider error of quantitative evaluation according to elapsed time. It's recommended to apply additional decay correction method considering decay correction the error concerning elapsed time or to set the scan duration of static image less than 5minutes corresponding 25% of half life in study using shorter half-lived radionuclide as 11C.

  • PDF

A Refined Method for Quantification of Myocardial Blood Flow using N-13 Ammonia and Dynamic PET (N-13 암모니아와 양전자방출단층촬영 동적영상을 이용하여 심근혈류량을 정량화하는 새로운 방법 개발에 관한 연구)

  • Kim, Joon-Young;Lee, Kyung-Han;Kim, Sang-Eun;Choe, Yearn-Seong;Ju, Hee-Kyung;Kim, Yong-Jin;Kim, Byung-Tae;Choi, Yong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.73-82
    • /
    • 1997
  • Regional myocardial blood flow (rMBF) can be noninvasively quantified using N-13 ammonia and dynamic positron emission tomography (PET). The quantitative accuracy of the rMBF values, however, is affected by the distortion of myocardial PET images caused by finite PET image resolution and cardiac motion. Although different methods have been developed to correct the distortion typically classified as partial volume effect and spillover, the methods are too complex to employ in a routine clinical environment. We have developed a refined method incorporating a geometric model of the volume representation of a region-of-interest (ROI) into the two-compartment N-13 ammonia model. In the refined model, partial volume effect and spillover are conveniently corrected by an additional parameter in the mathematical model. To examine the accuracy of this approach, studies were performed in 9 coronary artery disease patients. Dynamic transaxial images (16 frames) were acquired with a GE $Advance^{TM}$ PET scanner simultaneous with intravenous injection of 20 mCi N-13 ammonia. rMBF was examined at rest and during pharmacologically (dipyridamole) induced coronary hyperemia. Three sectorial myocardium (septum, anterior wall and lateral wall) and blood pool time-activity curves were generated using dynamic images from manually drawn ROIs. The accuracy of rMBF values estimated by the refined method was examined by comparing to the values estimated using the conventional two-compartment model without partial volume effect correction rMBF values obtained by the refined method linearly correlated with rMBF values obtained by the conventional method (108 myocardial segments, correlation coefficient (r)=0.88). Additionally, underestimated rMBF values by the conventional method due to partial volume effect were corrected by theoretically predicted amount in the refined method (slope(m)=1.57). Spillover fraction estimated by the two methods agreed well (r=1.00, m=0.98). In conclusion, accurate rMBF values can be efficiently quantified by the refined method incorporating myocardium geometric information into the two-compartment model using N-13 ammonia and PET.

  • PDF