• Title/Summary/Keyword: ROI(Region of Interest)

Search Result 482, Processing Time 0.028 seconds

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan;Zhenghao Ding;Jun Li;Hong Hao
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.421-436
    • /
    • 2023
  • This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.

Machine Vision Platform for High-Precision Detection of Disease VOC Biomarkers Using Colorimetric MOF-Based Gas Sensor Array (비색 MOF 가스센서 어레이 기반 고정밀 질환 VOCs 바이오마커 검출을 위한 머신비전 플랫폼)

  • Junyeong Lee;Seungyun Oh;Dongmin Kim;Young Wung Kim;Jungseok Heo;Dae-Sik Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.112-116
    • /
    • 2024
  • Gas-sensor technology for volatile organic compounds (VOC) biomarker detection offers significant advantages for noninvasive diagnostics, including rapid response time and low operational costs, exhibiting promising potential for disease diagnosis. Colorimetric gas sensors, which enable intuitive analysis of gas concentrations through changes in color, present additional benefits for the development of personal diagnostic kits. However, the traditional method of visually monitoring these sensors can limit quantitative analysis and consistency in detection threshold evaluation, potentially affecting diagnostic accuracy. To address this, we developed a machine vision platform based on metal-organic framework (MOF) for colorimetric gas sensor arrays, designed to accurately detect disease-related VOC biomarkers. This platform integrates a CMOS camera module, gas chamber, and colorimetric MOF sensor jig to quantitatively assess color changes. A specialized machine vision algorithm accurately identifies the color-change Region of Interest (ROI) from the captured images and monitors the color trends. Performance evaluation was conducted through experiments using a platform with four types of low-concentration standard gases. A limit-of-detection (LoD) at 100 ppb level was observed. This approach significantly enhances the potential for non-invasive and accurate disease diagnosis by detecting low-concentration VOC biomarkers and offers a novel diagnostic tool.

Automatic Defect Detection using Fuzzy Binarization and Brightness Contrast Stretching from Ceramic Images for Non-Destructive Testing (비파괴 검사를 위한 개선된 퍼지 이진화와 명암 대비 스트레칭을 이용한 세라믹 영상에서의 결함 영역 자동 검출)

  • Kim, Kwang Baek;Song, Doo Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2121-2127
    • /
    • 2017
  • In this paper, we propose a computer vision based automatic defect detection method from ceramic image for non-destructive testing. From region of interest of the image, we apply brightness enhancing stretching algorithm first. One of the strength of our method is that it is designed to detect defects of images obtained from various thicknesses, that is, 8, 10, 11, 16, and 22 mm. In other cases we apply histogram based binarization algorithm. However, for 8 mm case, it may have false positive cases due to weak brightness contrast between defect and noise. Thus, we apply modified fuzzy binarization algorithm for 8 mm case. From the experiment, we verify that the proposed method shows stronger result than our previous study that used Blob labelling for all five thickness cases as expected.

The Lowest Dose for CT Attenuation Correction in PET/CT

  • Kang, Byung-Sam;Son, Jin-Hyun;Park, Hoon-Hee;Dong, Kyung-Rae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.3
    • /
    • pp.111-115
    • /
    • 2011
  • PET/CT(Positron Emission Tomography/Computed Tomography) is an examination combining morphological and functional information in one examination. The purpose of this study is to see the lowest CT dose for attenuation correction in the PET/CT maintaining good image quality when considering CT scan dose to the patients. We injected $^{18}F$-FDG and water into the cylinder shaped phantom, and obtained emission images for 3 mins and transmission images(140 kVp, 8 sec, 10~200 mA for transmission images), and reconstructed the images to PET/CT images with Iterative method. Data(Maximum, Minimum, Average, Standard Deviation) were obtained by drawing a circular ROI(Region Of Interest) on each sphere in each image set with Image J program. And then described SD according to the CT and PEC/CT images as graphes. Through the graphes, we got the relationships of mA and quality of images. SDs according to CT graph were 16.25 at 10 mA, 7.26 at 50 mA, 5.5 at 100 mA, 4.29 at 150 mA, and 3.83 at 200 mA, i.e. the higer mA, the better image quality was presented. SDs according to PET/CT graph were 1823.2 at 10 mA, 1825.1 at 50 mA, 1828.4 at 100 mA, 1813.8 at 150 mA, and 1811.3 at 200 mA. Calculated SDs at PET/CT images were maintained. This means images quality is maintained having nothing to do with mA of high and low.

  • PDF

The Study for the Fast Detection of the Stereo Radiation Detector using the Image Processing (영상처리기반 스테레오 감마선 탐지장치의 고속탐지에 관한 연구)

  • Hwang, Young-gwan;Lee, Nam-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1103-1105
    • /
    • 2015
  • Leaked Radioactive source in nuclear power station, radiation related facilities and the aging nuclear power plant for the dismantling must need to detect and remove early to prevent major accidents. In this paper, we implemented a single sensor-based gamma-ray detectors stereo which can provide the distance to the radiation source, a direction and doserate information for fast and efficient decontamination work the radiation source. And we have carried out an algorithm development for high-speed detection of the detection equipment. Two detectors are required for stereo structure for obtaining the distance information of the radioactive source, but we designed the only sensor-based detection device for the weight reduction. We have extracted the region of interest and obtained the distance calculation result and distribution of radiation source in order to minimize a stereo image acquisition time. Detection time of the algorithm showed a shorter time of about 41%.

  • PDF

Lane Departure Detection Using a Partial Top-view Image (부분 top-view 영상을 이용한 차선 이탈 검출)

  • Park, Han-dong;Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1553-1559
    • /
    • 2017
  • This paper proposes a lane departure detection algorithm using a single camera equipped in front of a vehicle. The proposed algorithm generates a partial top-view image for a small ROI (region of interest) designated on the top-view space form the image acquired by the camera, detects lanes on the small partial top-view image, and makes a decision on the lane departure by checking overlap between the pre-assigned virtual vehicle and the detected lanes. The proposed algorithm also includes the removal of lines occurred by road symbols (noises) disturbing the lane departure detection between lanes and the prediction of lost lanes using lane information of previous fames. In lane departure detection test using real road videos, the proposed algorithm makes the right decision of 99.0% in lane keeping conditions and 94.7% in lane departure conditions.

Correction of Rotated Objects in Medical Images Using the Mojette Transform (모젯 변환을 이용한 의료 영상의 회전 물체 보정)

  • Jung, Hyang-Mi;Kim, Ji-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1341-1348
    • /
    • 2012
  • In this paper, an efficient scheme for correcting rotated objects in medical images using the Mojette transform is presented. The Mojette transform is a kind of discrete Radon transform, where the transform domain is represented by a set of projections. The Mojette transform currently studied in the image compression area is modified for detecting the rotation angle of objects in medical images. First, in order to find accurate rotation angle, the projection value in the Mojette transform is determined by using pixels on the projection line and in addition the linear interpolation of pixels adjacent to the line. Second, at each projection angle, only one projection is implemented for reducing the amount of the calculation in the process of the Mojette transform. Finally, the projection in the Mojette transform is carried out at the predetermined ROI(Region Of Interest) at which the objects are not cropped or added by rotating the image. The simulation results show that the proposed method has good performance for correcting the rotation angle in medical images.

A Stereo Image Recognition-Based Method for measuring the volume of 3D Object (스테레오 영상 인식에 기반한 3D 물체의 부피계측방법)

  • Jeong, Yun-Su;Lee, Hae-Won;Kim, Jin-Seok;Won, Jong-Un
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.237-244
    • /
    • 2002
  • In this paper, we propose a stereo image recognition-based method for measuring the volume of the rectangular parallelepiped. The method measures the volume from two images captured with two CCD (charge coupled device) cameras by sequential processes such as ROI (region of interest) extraction, feature extraction, and stereo matching-based vortex recognition. The proposed method makes it possible to measure the volume of the 3D object at high speed because only a few features are used in the process of stereo matching. From experimental results, it is demonstrated that this method is very effective for measuring the volume of the rectangular parallelepiped at high speed.

Vision-based Target Tracking for UAV and Relative Depth Estimation using Optical Flow (무인 항공기의 영상기반 목표물 추적과 광류를 이용한 상대깊이 추정)

  • Jo, Seon-Yeong;Kim, Jong-Hun;Kim, Jung-Ho;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.267-274
    • /
    • 2009
  • Recently, UAVs (Unmanned Aerial Vehicles) are expected much as the Unmanned Systems for various missions. These missions are often based on the Vision System. Especially, missions such as surveillance and pursuit have a process which is carried on through the transmitted vision data from the UAV. In case of small UAVs, monocular vision is often used to consider weights and expenses. Research of missions performance using the monocular vision is continued but, actually, ground and target model have difference in distance from the UAV. So, 3D distance measurement is still incorrect. In this study, Mean-Shift Algorithm, Optical Flow and Subspace Method are posed to estimate the relative depth. Mean-Shift Algorithm is used for target tracking and determining Region of Interest (ROI). Optical Flow includes image motion information using pixel intensity. After that, Subspace Method computes the translation and rotation of image and estimates the relative depth. Finally, we present the results of this study using images obtained from the UAV experiments.

Lane detection method using Median Filter based Retinex Algorithm in Foggy Image (미디언 필터 기반의 Retinex 알고리즘을 통한 안개 영상에서의 차선검출 기법)

  • Kim, Young-Tak;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.31-39
    • /
    • 2010
  • The paper proposes the median filter based Retinex algorithm to detect the lanes in a foggy image. Whether an input image is foggy or not is determined by analyzing the histogram in the pre-defined ROI(Region of Interest). If the image is determined as a foggy one, then it is improved by the median filter based Retinex algorithm. By replacing the Gaussian filter by the median filter in the Retinex algorithm, the processing time can be reduced and the lane features can be detected more robustly. Once the enhanced image is acquired, the binarization based on multi-threshold and the labeling operations are applied. Finally, it detects the lane information using the size and direction parameters of the detected lane features. The proposed algorithm has been evaluated by using various foggy images collected on different road conditions to prove that it detects lanes more robustly in most cases than the conventional methods.