• Title/Summary/Keyword: RO(Reverse Osmosis)

Search Result 231, Processing Time 0.021 seconds

Treatment of AP Solutions Extracted from Solid Propellant by NF/RO Membrane Process (NF/RO 멤브레인 공정을 적용한 고체추진제에서 추출된 암모늄 퍼클로레이트 (AP) 처리 연구)

  • Kong, Choongsik;Heo, Jiyong;Yoon, Yeomin;Han, Jonghun;Her, Namguk
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.235-242
    • /
    • 2012
  • Ammonium perchlorate (AP) is primarily derived from the process of liquid incineration treatment when dismantling a solid rocket propellant. A series of batch dead-end nanofiltration (NF) and reverse osmosis (RO) membrane experiments were conducted to explore the retention mechanisms of AP under various hydrodynamic and solution conditions. Low levels of silicate type of siloxane had been detected through the GC/MS and FTIR analysis of liquid solutions extracted from solid ammonium perchlorate composite propellant (APCP). It is indicated that NF/RO membranes fouling in the presence of APCP was mainly attributed to the AP interactions because the concentration of silicate type of siloxane was negligible compared to that of AP. The osmotic pressure of AP was presumably resulted in the flux declines ranging from 13 to 17% in the case of the application of low-pressure (551 and 896 kPa for NF and RO) compared to those in application of high-pressure. The retention of AP by NF/RO membranes significantly varied from approximately 10 to 70% for NF and 26 to 87% for RO, depending on the operating and solution water chemistry conditions. The results suggested that retention efficiency of AP was fairly increased by reducing concentration polarization (i.e. application of low-pressure and stirring speed of 600 rpm) and increasing the pH of a solution. The result of this study was also consistent with the previous modeling of 'solute mass transfer of NF/RO membranes' and demonstrated that hydrodynamic and solution water chemistry conditions are to be a key factor in the retention of AP by NF/RO membranes.

In vitro culture of rare plant Bletilla striata using Jeju magma seawater (제주 용암해수를 이용한 희귀식물 자란(Bletilla striata)의 기내배양)

  • Bae, Kee-Hwa;Kim, Ki Ju;Kim, Nam Young;Song, Jae Mo
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.281-287
    • /
    • 2012
  • This experiment was conducted to investigate the effect of various type of Magma seawater (MSW) concentrations on plant growth and useful mineral contents in Bletilla striata. In the RO (Reverse Osmosis) and ED (Electronic Distal) treatment, hardness of medium was poored in 3.0 g/L gelrite but increased in 8.0 g/L plant agar, 38,000 and $2,000g/cm^2$ respectably. We analyzed the morphological and physiological characteristics differences of B. striata treated various MSW. Survival frequency of plant and growth (shoot length, shoot diameter, root length, root diameter, shoot/root ratio) were significantly increased in RO and ED treatment at 50% and 10%, especially. Chlorophyll contents in ED treatments were higher than those in control and RO treatment. The content of strontium (Sr) in 20, 50, 75, 100% ED treatment, were higher than those in the control and RO, ED 1, 5, 10% treatment. These results showed that treatment of ED with the range of 20~100% could be used to supply the strontium enriched orchid plant. It is considered that MSW may be applied for use in Magma seawater to promotion of growth and produced functional plant.

Effects of Drinking Reverse-osmosis Treated Deep Sea Water on Growth Performance and Immune Response in Broiler Chickens

  • Keohavong, Bounmy;Lee, Jun-Yeob;Lee, Jeong-Heon;Yun, Seok-Min;Lee, Myeong-Ho;Lee, Sung-Ki;Kim, Gur-Yoo;Ohh, Sang-Jip
    • Journal of Animal Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.213-220
    • /
    • 2010
  • This study was executed to investigate the effects of drinking deep sea water treated by reverse osmosis process (RO-DSW) on growth performance, nutrient utilizability, relative weight of lymphoid organs and the concentration of serum immunoglobulin G (IgG) in broiler chickens. A total of 200 one day old broiler chickens (Ross 308) were equally and randomly distributed into 10 ground floor pens (20 chicks per pen, 5 pens per treatment) bedded with rice-husks. The broilers were offered either fresh tap water (Control) or RO-DSW for 28 days (from d 6 to d 33) as the drinking water. The same basal phase 1 diet for first 2 weeks and phase 2 diet for last 2 weeks were offered ad libitum to the birds. The RO-DSW was prepared by diluting 1:20 ratio with deionized water before offering to chickens. The diet for control birds was supplemented with 0.21 % of food-grade salt to satisfy salt need of the birds. Broiler feeding study resulted that there were no differences in amount of water consumption, mortality and FCR between RO-DSW and control chickens. However, feed intake and body weight gain were increased (p<0.05) by RO-DSW drinking. There was no (p>0.05) difference in nutrients utilizability between RO-DSW and fresh water drinking. There were no (p>0.05) differences in the immune response between the control and treatment group. The serum IgG levels were 3.01 vs 2.87 mg/ml and the relative weights of spleen, thymus and bursa of Fabricius were 0.23, 0.18 and 0.20 vs. 0.20, 0.17 and 0.14 for RO-DSW vs. control birds, respectively. The immune responses were tended to be improved by RO-DSW drinking. This study showed an improvement in weight gain and feed intake that could be induced by RO-DSW drinking, although it is difficult to explain the reasons of the improvement at this moment. This study implied that RO-DSW could be successfully used as drinking water to broiler chickens.

A study on boron removal for seawater desalination using the combination process of mineral cluster and RO membrane system

  • Cho, Bong-Yeon;Kim, Hye-Won;Shin, Yee-Sook
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.285-289
    • /
    • 2015
  • Complicated and expensive seawater desalination technology is a big challenge in boron removal process. Conventional seawater desalination process of coagulation utilized for pre-treatment is difficult to remove boron. Boron can be removed more effectively in Reverse Osmosis (RO) process than any other processes. In this study, a coagulant with the name Mineral Cluster was examined its boron removal ability. Boron removal efficiency of Mineral Cluster depended on pH value and Mineral Cluster dosage. Desalination process combines the pre-treatment process with Mineral cluster diluted at the ratio of 1:2500 and the RO membrane process. The original sea water could be desalinated to drinking water quality, 1 mg/L, without any pH adjustments. Therefore, if the Mineral cluster is added without any other chemicals for adjusting pH, the desalination process would be much safer, efficient and economical.

Sewage Treatment using Membrane Bioreactor(MBR) and Reverse Osmosis(RO) Process (Membrane bioreactor(MBR)과 Reverse osmosis(RO) 공정을 이용한 하수처리)

  • Oh, Seungwook;Jung, Jongtae;Lee, Jinwoo;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.21-28
    • /
    • 2007
  • The objective of this study was to investigate the effect of hydraulic retention time (HRT) on removal efficiencies of organic matter, nitrogen and phosphorus in MBR-RO process for treating synthetic sewage. In MBR process, turbidity was less than average 2 NTU and average removal efficiency showed more than 99% during the operation period(MBR 105 day). As a result of HRT variation, average removal efficiencies of $COD_{Cr}$ on HRT 6, 12, 18 and 24hour were about 72.4, 84, 88.6 and 92.5%, respectively. The $NH_4{^+}-N$ removal efficiency was about 60.2 85.5, 91.3 and 92.2%, respectively. T-N and T-P removal efficiencies increased from 53.7 and 56.8 to 82.5 and 86.4%, respectively as the HRT increased from 6 hour to 24 hour. In RO process, average removal efficiencies of color and $COD_{Cr}$ in RO permeate were about 99.9% and 96.8%, respectively. Also, removal efficiencies of T-N, $NH_4{^+}-N$, $NO_3{^-}-N$ and T-P were all above average 90%.

  • PDF

Potable Water Treatment Study using the Double Stage Fiber Filter for the Pre-treatment of the Reverse Osmosis Membrane (역삼투막 전처리로서의 2단 섬유상 여과기를 이용한 정수처리 연구)

  • Bae, Si-Youl;Jang, Hyung-Wook;Yun, Chang-Han
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2010
  • This study was to evaluate the performance of the Double stage Pore controllable fiber (DP) filter system as the pre-treatment of the RO membrane. The evaluation for the pre-treatment filter was performed through the indirect method, SDI (Silt Density Index) measurement of the filtrate. This study was done during Jan. 3 of 2009 to Dec. 3 of 2009 at OO Water Treatment Plant that was suppling industrial water to plants, and the raw water was contaminated lake water and it was fed to the system after clarification with coagulation. The average turbidity of the feed water and that of the filtrate was 0.79 NTU (0.28~4.01 NTU), and 0.16 NTU (0.04~0.50) respectively. And so the average turbidity removal efficiency was 77%. The filtrate flow rate and the backwash water flow rate was about 230 $m^3$/day and about 8.7 $m^3$/day respectively, and so the backwash rate was 3.8%. The data for some samples were obtained after a few days storage, and it caused the higher turbidity and SDI15 as the storage time was increased. But average SDI value of the filtrate was 3.6 (2.26~5.00) which was lower than minimum value required by the RO membrane manufacturer as the RO feed water to guarantee the life time of the RO membrane. So, the DP filter system was enough for the application as the pre-treatment of the RO membrane.

Evaluation of Forward Osmosis (FO) Membrane Performances in a Non-Pressurized Membrane System (비가압식 막 공정을 통한 정삼투막 성능 평가)

  • Kim, Bongchul;Boo, Chanhee;Lee, Sangyoup;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.292-299
    • /
    • 2012
  • The objective of this study is to develop a novel method for evaluating forward osmosis (FO) membrane performances using a non-pressurized FO system. Basic membrane performance parameters including water (A) and solute (B) permeability coefficients and unique parameter for FO membrane such as the support layer structural parameter (S) were determined in two FO modes (i.e., active layer faces feed solution (AL-FS) and active layer faces draw solution (AL-DS)). Futhermore, these parameters were compared with those determined in a pressurized reverse osmosis (RO) system. Theoretical water flux was calculated by employing these parameters to a model that accounts for the effects of both internal and external concentration polarization. Water flux from FO experiment was compared to theoretical water fluxes for assessing the reliability of those parameters determined in three different operation modes (i.e., AL-FS FO, AL-DS FO, and RO modes). It is demonstrated that FO membrane performance parameters can be accurately measured in non-pressurized FO mode. Specifically, membrane performance parameters determined in AL-DS FO mode most accurately predict FO water flux. This implies that the evaluation of FO membrane performances should be performed in non-pressurized FO mode, which can prevent membrane compaction and/or defect and more precisely reflect FO operation conditions.

Characterization of Reverse Osmosis Membrane Surface Modified by Silane-epoxy Using UV (UV를 적용한 역삼투막의 실란-에폭시 표면 개질 및 특성 평가)

  • Park, Hee Min;Yang, Won Yong;Lee, Yong Taek
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.169-179
    • /
    • 2018
  • The purposes of this paper were to improve both fouling and chlorine resistance by increasing the hydrophilicity of the reverse osmosis membrane. In order to improve chlorine resistance, the surface of RO membrane was activated by ultraviolet irradiation, and then it was modified by the sol-gel method using Octyltriethoxysilane (OcTES) such as the silane coupling agent to low sensitivity to chlorine, thereby the polyamide active layer was protected and chlorine resistance was improved. In addition, polyglycerol polyglycidyl ether (PGPE) and sorbitol polyglycidyl ether (SPE) coating with different number of epoxides, ring opening reaction of epoxide improved the anti-fouling resistance. The surface modification condition was optimized by FT-IR, XPS, and contact angle analysis. As a result, the permeability reduction rate of the silane-epoxy modified membrane after the fouling test was decreased about 1.5 times as compared with that of the commercial membrane. And the salt rejection was maintained over 90% at $20,000ppm{\times}hr$ even after chlorine resistance test.

The Application of RO Membrane System in Municipal Wastewater Reclamation (RO Membrane System을 이용한 도시하수처리)

  • 이규현;안준수;유제강
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.78-95
    • /
    • 1991
  • Water factory 21(WF 2) in Orange County California, is a advanced wastewater treatment(AWT) plant designed to reclaim biologically treated munidpal wastewater for injection into a seawater barrier system. Processes included are lime treatment air stripping, filtration, activated carbon adsorption, reverse osmosis(RO), and chlorination. The effectiveness of each treatment process is presented including pretreatment, RO dimineralization. The data collected show that the processes, including RO, used at WF-21 are capable of producing a very high quality water on a reliable basis. Treatment reduced all contaminants, to levels below national primary drinldng water regulation maximum contaminant levels. It was found that lime clarified secondary effluent can be used as feedwater to a RO dimineralizer. Experiments with new low pressure membrane(250psi) show great potential for reducing RO cost.

  • PDF

Comparisons of Reverse Osmosis and Pervaporation Membrane Processes I. Theoretical Interpretations

  • Rhim, Ji-Won;Lee, Kew-Ho;Huang, Y.M.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1991.10a
    • /
    • pp.47-48
    • /
    • 1991
  • The pressure in RO leads to a concentration difference across the membrane, while the concentration difference in PVAP across the membrane is achieved by applying a vacuum to the downstream compartment. Therefore, it could be possible to compare this two processes using the solution-diffusion mechanism.

  • PDF