• 제목/요약/키워드: RNase

검색결과 161건 처리시간 0.026초

Confirmation of Parentage of the Pear Cultivar 'Niitaka' (Pyrus pyrifolia) Based on Self-incompatibility Haplotypes and Genotyping with SSR Markers

  • Kim, Hoy-Taek;Nou, Ill-Sup
    • 원예과학기술지
    • /
    • 제34권3호
    • /
    • pp.453-460
    • /
    • 2016
  • The parentage of the horticulturally important pear cultivar 'Niitaka' was confirmed by determining its S-genotypes based on the S-RNase and $PpSFBB^{-{\gamma}}$ genes, and genotyping using simple sequence repeat (SSR) markers. Previous reports suggested that the cultivars 'Amanogawa' and 'Imamuraaki' were the parents of 'Niitaka', although the cultivars 'Chojuro' and 'Shinchu' were also examined as candidate parents, along with two other cultivars. In the present study, the S-genotype of 'Niitaka' was determined to be $S^3S^9$. The $S^9$-RNase of 'Niitaka' was found to be likely inherited from the parent 'Amanogawa' ($S^1S^9$) and the $S^3$-RNase from 'Chojuro' ($S^3S^5$) or 'Shinchu' ($S^3S^5$). Based on the S-genotypes, the cultivar 'Imamuraaki' ($S^1S^6$) had no contribution to the parentage of 'Niitaka' ($S^3S^9$). A total of 67 polymorphic SSR markers were used to further confirm the parentage of 'Niitaka'. Discrepancies were found at several SSR loci between 'Niitaka' and the cultivars 'Imamuraaki' and 'Shinchu', whereas 'Niitaka' inherited alleles from 'Amanogawa' and 'Chojuro' at all SSR loci. Therefore, our findings established that 'Amanogawa' and 'Chojuro' are the parents of pear cultivar 'Niitaka', and not 'Imamuraaki' as previously reported.

Escherichia coli 리보핵산 내부분해효소 RNase E의 돌연변이체 선별 및 특성분석 (Identification and Functional Analysis of Escherichia coli RNase E Mutants)

  • 신은경;고하영;김영민;주세진;이강석
    • 미생물학회지
    • /
    • 제43권4호
    • /
    • pp.325-330
    • /
    • 2007
  • 대장균의 필수적인 리보핵산 내부분해효소인 RNase E는세포내에서 여러 RNA의 분해와 가공과정에서 중요한 역할을 하며, 이 단백질의 효소활성부위를 포함하는 N-말단부위의 498 아미노산(N-Rne)만의 발현으로도 세포의 생장을 가능하게 한다. 이러한 RNase E의 특성을 활용하여 다양한 표현형을 가지는 N-Rne 돌연변이체들을 분리, 동정할 수 있는 효율적인 유전학적 시스템을 개발하였다. 이 시스템을 이용하여 얻어진 효소활성부위 돌연변이체들을 표현형으로 분류하여 분석한 결과, S1 도메인의 6번째 아미노산의 치환(I6T)을 가진 변이체는 야생형 N-Rne의 기능을 대체하지 못하였고, Small 도메인의 488번째 아미노산의 치환(R488C)을 가진 변이체는 야생형 N-Rne의 발현양보다 현저히 작게 발현시켜도 세포의 생장을 정상적으로 가능하게 하였다. 또한 DNase I 도메 인의 305번째 아미노산의 치환(N305D)을 가진 변이체는 야생형 N-Rne의 발현양보다 과발현시켰을 때만 세포의 생장을 가능하게 하였다. 각각의 아미노산 치환을 포함하는 N-Rne를 한정적으로 과발현시켰을 때의 ColEl-타입 플라스미드의 복제 수에 대한 영향을 측정한 결과, 돌연변이체 N-Rne의 세포생장에 대한 영향은 이 변이체들의 세포 내 효소활성 정도에 기인하는 것으로 밝혀졌다. 이러한 실험결과는 이 연구에서 개발한 유전학적 시스템을 이용하여 다양한 표현형을 가진 RNase E 변이체를 선별할 수 있으며, 이 변이체들의 특성을 분석함으로써 RNase E가 RNA의 안정성을 조절하는데 있어서 각각의 세부 도메인의 역할을 규명할 수 있으리라는 것을 시사한다.

Proteolysis of the Reverse Transcriptase of Hepatitis B Virus by Lon Protease in E. coli

  • Han, Joo-Seok;Park, Jae-Yong;Hwang, Deog-Su
    • Animal cells and systems
    • /
    • 제5권3호
    • /
    • pp.195-198
    • /
    • 2001
  • Hepatitis B virus (HBV) polymerase, which possesses the activities of terminal binding, DNA polymerase, reverse transcriptase and RNaseH, has been shown to accomplish viral DNA replication through a pregenomic intermediate. Because the HBV polymerase has not been purified, the expression of HBV polymerase was examined in an E. coli expression system that is under the regulation of arabinose operon. The expressed individual domain containing terminal binding protein, polymerase, or RNaseH turned out to be insoluble. The activities of those domains were not able to be recovered by denaturation and renaturation using urea or guanidine-HCI. The expressed reverse transcriptase containing the polymerase and RNaseH domains became extensively degraded, whereas the proteolysis was reduced in a Ion- mutant. These results indicate that Lon protease proteolyzes the HBV reverse transcriptase expressed in E. coli.

  • PDF

Effects of Overexpression of C5 Protein on rnpB Gene Expression in Escherichia coli

  • Kim, Yool;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권4호
    • /
    • pp.791-793
    • /
    • 2009
  • Escherichia coli RNase P is composed of a large RNA subunit (M1 RNA) and a small protein subunit (C5 protein). Since both subunits are assembled in a 1:1 ratio, expression of M1 RNA and C5 protein should be coordinately regulated for RNase P to be efficiently synthesized in the cell. However, it is not known yet how the coordination occurs. In this study, we investigated how overexpression of C5 protein affects expression of the rnpB gene encoding M1 RNA, using a lysogenic strain, which carries an rnpB-lacZ transcription fusion. Primer extension analysis of rnpB-lacZ fusion transcripts showed that the overexpression of C5 protein increased the amount of the fusion transcripts, suggesting that rnpB expression increases with the increase of intracellular level of C5 protein.

Transcription and Export of RNase MRP RNA in Xenopus Iaevis Oocyetes

  • 정선주
    • Animal cells and systems
    • /
    • 제1권2호
    • /
    • pp.363-370
    • /
    • 1997
  • RNase MRP is a ribonucleoprotein complex with a site-specific endonuclease activity. Its original substrate for cleavage is the small mitochondrial RNA near the mitochondrial DNA replication origin, thus it was proposed to generate the primer for mtDNA replication. Recently, it has been shown to have another substrate in the nucleus, such as pre-S.8S ribosomal RNA in nucleolus. The gene for the RNA component of RNase MRP (MRP RNA) was found to be encoded by the nucleus genome, suggesting an interesting intracellular trafficking of MRP RNA to both mitochondria and nucleolus after transcription in nucleus. In this study, genomic DNA encoding MRP RNA was microinjected into the nucleus of Xenopus oocytes, to analyze promoter regions involved in the transcription. It showed that the proximal sequence element and TATA box are important for basal level transcription; octamer motif and Sp1 binding sites are for elevated level transcription. Most of Xenopus MRP RNA was exported out to the cytoplasm following transcription in the nucleus. Utilizing various hybrid constructs, export of MRP RNA was found to be regulated by the promoter and the 5' half of the coding region of the gene. Interestingly, the transcription in nucleus seems to be coupled to the export of MRP RNA to cytoplasm. Intracellular transport of injected MRP RNA can be easily visualized by whole-mount in situ hybridization following microinjection; it also shows possible intra-nuclear sites for transcription and export of MRP RNA.

  • PDF

Enzymatic activity of Endoplasmic Reticulum Oxidoreductin 1 from Bombyx mori

  • Park, Kwanho;Yun, Eun-Young;Goo, Tae-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제37권1호
    • /
    • pp.15-20
    • /
    • 2018
  • Most proteins produced in the endoplasmic reticulum (ER) of eukaryotic cells fold via disulfide formation (oxidative folding). Oxidative folding is catalyzed by protein disulfide isomerase (PDI) and PDI-related ER protein thiol disulfide oxidoreductases (ER oxidoreductases). In yeast and mammals, ER oxidoreductin-1s (ERO1s) supply oxidizing equivalent to the active centers of PDI. We previously identified and characterized the ERO1 of Bombyx mori (bERO1) as a thioredoxin-like protein that shares primary sequence homology with other ERO1s. Here we compare the reactivation of inactivated rRNase and sRNase by bERO1, and show that bERO1 and bPDI cooperatively refold denatured RNase A. This is the first result suggesting that bERO1 plays an essential role in ER quality control through the combined activities of bERO1 and bPDI as a catalyst of protein folding in the ER and sustaining cellular redox homeostasis.

In Vitro Glycosylation of Peptide (RKDVY) and RNase A by PNGase F

  • Park, Su-Jin;Lee, Ji-Youn;Park, Tai-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권2호
    • /
    • pp.191-195
    • /
    • 2003
  • The in vitro glycosylation of pentapeptide (Arg-Lys-Asp-Val-Tyr; RKDVY) and RNase A was carried out using PNGase F (peptide-N-glycosidase F), and the results were analyzed using MALDI-TOF-MS. Aminated N,N-diretyl chitobiose was used as the sugar in the glycosylation reaction, and the amination yield of N,N'-diacetyl chitobiose was about $60\%$. To reduce the water activity and shift the reaction equilibrium to a reverse reaction, 1,4-dioxane or ethylene glycol was used as the organic solvent in the enzymatic glycosylation. A certain extent of nonenzymatic glycosylaton, known as the Maillard reaction, was also observed, which occurs on an arginine or lysine residue when the length of tie sugar residue is one or two. However, the extent of glycosylation was much higher in the enzymatic reaction, indicating that PNGase F can be effectively used to produce glycopeptides and glycoproteins in vitro.

Analysis of Transcripts Expressed from the UL47 Gene of Human Cytomegalovirus

  • Hyun, Jong-Jun;Park, Hyo-Soon;Kim, Ki-Ho;Kim, Hung-Jin
    • Archives of Pharmacal Research
    • /
    • 제22권6호
    • /
    • pp.542-548
    • /
    • 1999
  • The UL47 gene (b 60390-b 60388) located in the unique long region of the human cytomegalovirus (HCMV) AD169 strain genome was analyzed RNA mapping. Northern blot analysis showed that the UL47 gene was expressed at late times after infection (72 h postinfection). The 9.7-kb transcript was expressed in the infected cells but not in phosphonoformate-treated cells at 72 hpi, indicating that the UL47 gene was only expressed at late times after infection. To map the 5'-end and 3'-end of UL47 transcripts, primer at late times after infection. To map the 5'-end and 3'-end of UL47 transcripts, primer extension and RNase protection analysis were performed. Primer extension analysis revealed that the transcription initiation site of UL47 was located in 27 bp downstream (b 60323) of the TATA box motif. The sizes of UL47 ORF (approximately 2.9-kb) and UL48 ORF (approximately 6.7-kb) deduced from computer sequence analysis suggest that the expressed 9.7-kb transcript of UL47 uses the 3'-end polyadenylation signal of Ul48. The result of RNase protection determined that the 3'-end of UL47 RNA utilized the 3'-end polyadenylation signal of UL48, which is located in HCMV genome b 70082.

  • PDF