• Title/Summary/Keyword: RNase

Search Result 161, Processing Time 0.02 seconds

The Effect of Indole Acetic and Abscisic Acid on Ribonucleic Acid and Ribonuclease (Indole acetic acid 와 Abscisic acid 가 핵산(核酸)과 RNase 에 미치는 영향에 관(關)하여)

  • Jo, D.H.;Lee, C.Y.
    • Applied Biological Chemistry
    • /
    • v.15 no.3
    • /
    • pp.181-186
    • /
    • 1972
  • Wheat coleoptile sections were treated with either $1.5{\times}10^{-5}M$ ABA or $5×10^{-5}M$ IAA in vitro, the results may be summarized as follows, 1. The treatmert of IAA decreased the level of high molecular weight RNA F2 and F3 but that with ABA increased the F4 level. 2. IAA caused an increased activity of G2 isozyme, while ABA suppressed the activity of G3 isozyme. 3. The results may suggest that there may exist common effects of IAA and ABA on RNA and RNase. 4. The latent RNase activity caused by SH blocking reagent (p-hydroxymercury benzoate, Pb et al) was not observed.

  • PDF

PURIFICATION AND PROPERTIES OF EXTRACELLULAR NUCLEASE(S) FROM RUMEN CONTENTS OF BUBALUS BUBALIS

  • Sinha, P.R.;Dutta, S.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.2
    • /
    • pp.115-120
    • /
    • 1990
  • Extracellular nuclease(s) in buffalo rumen fluid were purified from strained rumen fluid by a procedure involving Seitz filtration, acetone fractionation and gel filtration on Sephadex G-100. The enzyme resolved into two peaks exhibiting both DNase and RNase activities. The molecular weight of enzyme corresponding to peaks I and II were approximately 30,000 and 12,000 respectively. The properties of enzymes from the two peaks, however, were same. Optimum temperature for both DNase and RNase activities was at $50^{\circ}C$. Whereas DNase activity was stable upto $60^{\circ}C$, RNase activity was stable only up to $50^{\circ}C$. DNase activity recorded two pH optima, one at pH 5.5 and the other at pH 7.0. RNase activity recorded a broad pH optimum between pH 6.0-8.0. pH stability of the enzyme coincided with pH optima for both the activities. DNase activity was stimulated by $Mg^{2+}$ and $Mn^{2+}$ and inhibited by $Fe^{2+}$, $Zn^{2+}$, $Hg^{2+}$ and $Ag^+$. RNase activity was also stimulated by $Mg^{2+}$ and $Mn^{2+}$ and inhibited by $Cu^{2+}$, $Fe^{2+}$, $Zn^{2+}$, $Hg^{2+}$ and $Ag^+$. Reducing agents stimulated both the activities.

Whole-mount in situ Hybridization of Mitochondrial rRNA and RNase MRP RNA in Xenopus laevis Oocytes

  • Jeong, Sun-Joo
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.529-538
    • /
    • 1998
  • In order to analyze the intracellu1ar localization of specific RNA components of ribonucleoproteins (RNP) in Xenopus oocytes, a modified protocol of whole-mount in situ Hybridization is presented in this paper, Mitochondria specific 12S rRNA probe was used to detect the amplification and distribution of mitochondria in various stages of the oocyte life cycle, and the results were found to be consistent with previously known distribution of mitochondria. The results with other specific probes (U1 and U3 small nuclear RNAs, and 5S RNA) also indicate that this procedure is generally effective in localizing RNAs in RNP complexes even inside organelles. In addition, the RNA component of RNase MRP, the RNP with endoribo-nuclease activity, localize to the nucleus in various stages of the oocyte life cycle. Some of MRP RNA, however, were found to be localized to the special population of mitochondria near the nucleus, especially in the active stage of mitochondrial amplification. It suggests dual localization of RNase MRP in the nucleus and mitochondria, which is consistent with the proposed roles of RNase MRP in mitochondrial DNA replication and in rRNA processing in the nucleolus.

  • PDF

Cloning and Sequencing of the rph Gene Encoding RNase PH from Legionella pneumophila

  • Kim, Se-Jin;Lim, Jong-Seok;Cianciotto, Nicholas P.;Choe, Yong-Kyung
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.218-223
    • /
    • 1999
  • Legionella pneumophila, the cause of Legionnaires disease, is able to survive intracellularly in eukaryotic cells such as monocytes, macrophages, and protozoan organisms. During protein biosynthesis, the rph gene encodes ribonuclease (RNase) PH which functions as a phosphorolytic nuclease that removes nucleotides following the CCA terminus of tRNA and as a nucleotidyl-transferase which adds nucleotides to the ends of RNA molecules by usingnucelside diohosphates as substrates. In this sutdy, the rph gene was screened in pUC19 library employing a DNA probe which was constructed from PCR based on a consensus pattern of multiple alignment of RNas PH. The encoded protein consists of 235 amino acid residues with a calculated molecular weight of 26,112 Daltons. The RNase PH signature domains are completely conserved.

  • PDF

Variation of RNase activities and nucleic acid content of non-irradiated and irradiated eggs of Bombyx mori during early development of embryo (잠란(蠶卵)의 초기발육과정(初期發育過程)에 따르는 RNase활성(活性) 및 핵산량(核酸量)의 변동(變動) 및 그 X선조사(線照射)에 의한 영향(影響)에 관(關)한 연구(硏究))

  • Lee, K.Y.;Cheon, H.W.
    • Applied Biological Chemistry
    • /
    • v.15 no.2
    • /
    • pp.163-168
    • /
    • 1972
  • Previously identified female pupae were X-irradiated with a dose of 1000r one day prior to moth transformation. Female mothes from irradiated and non-irradiated pupae were copulated with normal male ones and allowed to lay eggs. Fertilized eggs were collected at 6 intervals such as 5, 15, 45, 90 minutes, 12 and 40 hours after laying, and deep-freezed immediately after each collection until measurements. RNase activity and nucleic acid content were determined with each sample and following results were obtained. 1) It was proved to exist two RNases in silk worm eggs as in mammalian tissues, one active maximally at pH 5.8 and the other at pH 8.0, and the acid RNase activity was much higher than that of alkaline RNase. 2) The activity of acid and alkaline RNases increased remarkably during early development of the embryo of silk worm eggs, reaching the maximum activity at 45 minutes from laying time in non-irradiated group. There was no appreciable difference in two RNase activities for 45 minutes after laying in both control and irradiated groups, but the activity of acid and alkaline RNases in latter group was three times as much as that in former group, at 90 minutes from laying time and it was also found the acid RNase activity was 1.8 times higher than alkaline one in irradiated group. 3) The RNA-P content of control group increased considerably for initial 45 minutes, followed by a decline 45 minutes later with sight but steady increase thereafter. The RNA-P content of irradiated group, however, increased at initial 5 minutes, followed by a marked fall 90 minutes after laying, with no change thereafter. The DNA-P of control group showed a sharp increase for initial 45 minutes, followed by a decline 45 minutes later with no appreciable change thereafter, whereas that of irradiated group showed an increase at initial 15 minutes, followed by a sharp decline for following 45 minutes with a gradual increase thereafter. It was thus proved that the synthesis of nucleic acid in silk worm eggs was much suppressed by X-irradiation during early development of embryo. 4) The RNase activity varied in parallel with the RNA-P content in control group, but the RNA-P content in irradiated group was shown to be minimum value in concidence with the maximum activity of both RNases.

  • PDF