• Title/Summary/Keyword: RNAs

Search Result 1,408, Processing Time 0.027 seconds

Effects of high-fat diet induced obesity on tissue zinc concentrations and zinc transporter expressions in mice (고지방식이로 유도한 비만이 마우스의 조직 아연 농도와 아연수송체 발현에 미치는 영향)

  • Min, Byulchorong;Chung, Jayong
    • Journal of Nutrition and Health
    • /
    • v.51 no.6
    • /
    • pp.489-497
    • /
    • 2018
  • Purpose: Obesity is often associated with disturbances in the mineral metabolism. The purpose of this study was to investigate the effects of high-fat diet-induced obesity on tissue zinc concentrations and zinc transporter expressions in mice. Methods: C57BL/6J male mice were fed either a control diet (10% energy from fat, control group) or a high-fat diet (45% energy from fat, obese group) for 15 weeks. The zinc concentrations in the serum, stool, and various tissues were measured by inductively coupled plasma (ICP)-atomic emission spectrophotometry or ICP-mass spectrophotometry. The levels of zinc transporter mRNAs in the liver, duodenum, and pancreas were measured by real-time RT-PCR. The levels of serum adipokines, such as leptin and IL-6, were determined. Results: The total body weight, adipose tissue weight, and hepatic TG and cholesterol concentrations were significantly higher in the obese group, as compared to the control group. The obese group had significantly higher levels of serum leptin and pro-inflammatory IL-6 concentrations, and had significantly lower levels of serum alkaline phosphatase activity. The zinc concentrations of the liver, kidney, duodenum, and pancreas were all significantly lower in the obese group than in the control group. On the other hand, the fecal zinc concentrations were significantly higher in the obese group than in the control group. The serum zinc concentrations were not significantly different between the two groups. The ZnT1 mRNA levels of the liver and the pancreas were significantly higher in the obese group, as compared to the control group. Hepatic Zip10 mRNA was also increased in the obese group. Conclusion: Our study findings suggest that obesity increases fecal zinc excretion and lowers the tissue zinc concentrations, which may be associated with alterations in the zinc transporter expressions.

Biogenesis of Lysosome-related Organelle Mutant Silkworms by Direct Injection of a Cas9 Protein-guided RNA Complex into Bombyx mori Embryos (Cas9 단백질/ 가이드 RNA 복합체를 이용한 누에 BmBLOS 유전자 편집)

  • Kim, Kee Young;Yu, Jeong Hee;Kim, Su-Bae;Kim, Seong-Wan;Kim, Seong-Ryul;Choi, Kwang-Ho;Kim, Jong Gil;Park, Jong Woo
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.537-544
    • /
    • 2019
  • Genome editing technology employing gene scissors has generated interest in molecular breeding in various fields, and the development of the third-generation gene scissors of the clustered, regularly interspaced short palindromic repeat (CRISPR) system has accelerated the field of molecular breeding through genome editing. In this study, we analyzed the possibility of silkworm molecular breeding using gene scissors by genomic and phenotypic analysis after editing the biogenesis of lysosome-related organelles (BmBLOS) gene of Bakokjam using the CRISPR/Cas9 system. Three types of guide RNAs (gRNA) were synthesized based on the BmBLOS gene sequence of Bakokjam. Complexes of the prepared gRNA and Cas9 protein were formed and introduced into Bombyx mori BM-N cells by electroporation. Analysis of the gene editing efficiency by T7 endonuclease I analysis revealed that the B4N gRNA showed the best efficiency. The silkworm genome was edited by microinjecting the Cas9/B4N gRNA complex into silkworm early embryos and raising the silkworms after hatching. The hatching rate was as low as 18%, but the incidence of mutation was over 40%. In addition, phenotypic changes were observed in about 70% of the G0 generation silkworms. Sequence analysis showed that the BmBLOS gene appeared to be a heterozygote carrying the wild-type and mutation in most individuals, and the genotype of the BmBLOS gene was also different in all individuals. These results suggest that although the possibility of silkworm molecular breeding using the CRISPR/Cas9 system would be very high, continued research on breeding and screening methods will be necessary to improve gene editing efficiency and to obtain homozygotes.

High-mobility Group Box 1 Induces the Epithelial-mesenchymal Transition, Glycolytic Switch, and Mitochondrial Repression via Snail Activation (HMGB1/Snail cascade에 의한 epithelial-mesenchymal transition 및 glycolytic switch, mitochondrial repression 유도)

  • Lee, Su Yeon;Ju, Min Kyung;Jeon, Hyun Min;Kim, Cho Hee;Park, Hye Gyeong;Kang, Ho Sung
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1179-1191
    • /
    • 2019
  • Cancer cells undergo the epithelial-mesenchymal transition (EMT) and show unique oncogenic metabolic phenotypes such as the glycolytic switch (Warburg effect) which are important for tumor development and progression. The EMT is a critical process for tumor invasion and metastasis. High-mobility group box 1 (HMGB1) is a chromatin-associated nuclear protein, but it acts as a damage-associated molecular pattern molecule when released from dying cells and immune cells. HMGB1 induces the EMT, as well as invasion and metastasis, thereby contributing to tumor progression. Here, we show that HMGB1 induced the EMT by activating Snail. In addition, the HMGB1/Snail cascade was found induce a glycolytic switch. HMGB1 also suppressed mitochondrial respiration and cytochrome c oxidase (COX) activity by a Snail-dependent reduction in the expression of the COX subunits COXVIIa and COXVIIc. HMGB1 also upregulated the expression of several key glycolytic enzymes, including hexokinase 2 (HK2), phosphofructokinase-2/fructose-2,6-bisphosphatase 2 (PFKFB2), and phosphoglycerate mutase 1 (PGAM1), in a Snail-dependent manner. However, HMGB1 was found to regulate some other glycolytic enzymes including lactate dehydrogenases A and B (LDHA and LDHB), glucose transporter 1 (GLUT1), and monocarboxylate transporters 1 and 4 (MCT1 and 4) in a Snail-independent manner. Transfection with short hairpin RNAs against HK2, PFKFB2, and PGAM1 prevented the HMGB1-induced EMT, indicating that glycolysis is associated with HMGB1-induced EMT. These findings demonstrate that HMGB1 signaling induces the EMT, glycolytic switch, and mitochondrial repression via Snail activation.

Inhibitory effect of water-soluble mulberry leaf extract on hepatic lipid accumulation in high-fat diet-fed rats via modulation of hepatic microRNA-221/222 expression and inflammation (고지방식이 급여 쥐에서 수용성 뽕나무 잎 추출물의 간 microRNA-221/222 발현 및 염증 조절을 통한 간 지질 축적억제 효과)

  • Lee, Mak-Soon;Kim, Cheamin;Ko, Hyunmi;Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.55 no.2
    • /
    • pp.227-239
    • /
    • 2022
  • Purpose: This study investigated the effects of water-soluble mulberry leaf extract (ME) on hepatic lipid accumulation in high-fat diet-fed rats via the regulation of hepatic microRNA (miR)-221/222 and inflammation. Methods: Male Sprague-Dawley rats (4 weeks old) were randomly divided into 3 groups (n = 7 each) and fed with 10 kcal% low-fat diet (LF), 45 kcal% high-fat diet (HF), or HF + 0.8% ME for 14 weeks. Lipid profiles and cytokine levels of the liver and serum were measured using commercial enzymatic colorimetric and enzyme-linked immunosorbent assay, respectively. The messenger RNA (mRNA) and miR levels in liver tissue were assayed by real-time quantitative reverse-transcription polymerase chain reaction. Results: Supplementation of ME reduces body weight and improves the liver and serum lipid profiles as compared to the HF group. The mRNA levels of hepatic peroxisome proliferator-activated receptor-gamma, sterol regulatory element binding protein-1c, fatty acid synthase, and fatty acid translocase, which are genes involved in lipid metabolism, were significantly downregulated in the ME group compared to the HF group. In contrast, the mRNA level of hepatic carnitine palmitoyl transferase-1 (involved in fatty acid oxidation) was upregulated by ME supplementation. Furthermore, administration of ME significantly downregulated the mRNA levels of inflammatory mediators such as hepatic tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein-1, and inducible nitric oxide synthase. The serum levels of TNF-α, IL-6, and nitric oxide were also significantly reduced in ME group compared to the HF group. Expression of hepatic miR-221 and miR-222, which increase in the inflammatory state of the liver, were also significantly inhibited in the ME group compared to the HF group. Conclusion: These results indicate that ME has the potential to improve hepatic lipid accumulation in high-fat diet-fed rats via modulation of inflammatory mediators and hepatic miR-221/222 expressions.

Glutamate-rich 4 Binds to Kinesin Superfamily Protein 5A (Glutamate-rich 4와 kinesin superfamily protein 5A와의 결합)

  • Se Young Pyo;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Sang Jin Kim;Mooseong Kim;Jung Goo Lee;Dae-Hyun Seog
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Intracellular cargo transport is mediated by molecular motor proteins, such as kinesin and cytoplasmic dynein. Kinesins make up a large subfamily of molecular motors. Kinesin-1 is a plus-end-directed molecular motor protein that moves various cargoes, such as organelles, protein complexes, and mRNAs, along a microtubule track. It consists of the kinesin superfamily protein (KIF) 5A, 5B, and 5C (also called kinesin heavy chains) and kinesin light chains (KLCs). Kinesin-1 interacts with many different binding proteins through its carboxyl (C)-terminal region of KIF5s and KLCs, but their binding proteins have not yet been fully identified. In this study, a yeast two-hybrid assay was used to identify the proteins that interact with the KIF5A specific C-terminal region. The assay revealed an interaction between KIF5A and glutamate-rich 4 (ERICH4). ERICH4 bound to the KIF5A specific the C-terminal region but did not interact with the C-terminal region of KIF5B or KIF3A (a motor protein of kinesin-2). In addition, KIF5A did not interact with another isoform, ERICH1. Glutathione S-transferase (GST) pull-downs showed that KIF5A interacts with GST-ERICH4 and GST-ERICH4-amino (N)-terminal but not with GST-ERICH4-C or GST alone. When co-expressed in HEK-293T cells, ERICH4 co-localized with KIF5A and co-immunoprecipitated with KIF5A and KLC but not KIF3B. Together, our findings suggest that ERICH4 is capable of binding to KIF5A and that it may serve as an adaptor protein that links kinesin-1 with cargo.

Effect of 6-Hydroxydopamine (6-OHDA) on the Expression of Hypothalamus-Pituitary Axis Hormone Genes in Male Rats (수컷 흰쥐의 시상하부-뇌하수체 축 호르몬 유전자 발현에 미치는 6-Hydroxydopamine(6-OHDA)의 영향)

  • Heo, Hyun-Jin;Ahn, Ryun-Sup;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.257-264
    • /
    • 2009
  • A neurotoxin, 6-hydroxydopamine (6-OHDA) has been widely used to create animal model for Parkinson's disease (PD) due to its specific toxicity against dopaminergic (DA) neurons. Since DA signals modulate a broad spectrum of CNS physiology, one can expect profound alterations in neuroendocrine activities of both PD patients and 6-OHDA treated animals. Limited applications of 6-OHDA injection model, however, have been made on the studies of hypothalamuspituitary neuroendocrine circuits. The present study was performed to examine whether blockade of brain catecholamine (CA) biosynthesis with 6-OHDA can make any alteration in the transcriptional activities of hypothalamus-pituitary hormone genes in adult male rats. Three-month-old male rats (SD strain) were received 6-OHDA ($200{\mu}g$ in $10{\mu}\ell$ of saline/animal) by intracerebroventricular (icv) injection, and sacrificed after two weeks. To determine the mRNA levels of hypothalamuspituitary hormone genes, total RNAs were extracted and applied to the semi-quantitative RT-PCRs. The mRNA levels of tyrosine hydroxylase (TH), the rate-limiting enzyme for the catecholamine biosynthesis, were significantly lower than those from the control group (control:6-OHDA=1:0.72${\pm}$0.02AU, p<0.001), confirming the efficacy of 6-OHDA injection. The mRNA levels of gonadotropin-releasing hormone (GnRH) and corticotropin releasing hormone (CRH) in the hypothalami from 6-OHDA group were significantly lower than those from the control group (GnRH, control:6-OHDA=1:0.39${\pm}$0.03AU, p<0.001; CRH, control:6-OHDA=1:0.76${\pm}$0.07AU, p<0.01). There were significant decreases in the mRNA levels of common alpha subunit of glycoprotein homones (Cg$\alpha$), LH beta subunit (LH-$\beta$), and FSH beta subunit (FSH-$\beta$) in pituitaries from 6-OHDA group compared to control values (Cg$\alpha$, control:6-OHDA=1:0.81${\pm}$0.02AU, p<0.001; LH-$\beta$, control:6-OHDA=1:0.68${\pm}$0.04AU, p<0.001; FSH-$\beta$, control:6-OHDA=1:0.84${\pm}$0.05AU, p<0.001). Similarly, the level of adrenocorticotrophic hormone (ACTH) transcripts from 6-OHDA group was significantly lower than that from the control group (control: 6-OHDA=1:0.86${\pm}$0.04AU, p<0.01). The present study demonstrated that centrally injected DA neurotoxin could downregulate the transcriptional activities of the two hypothalamus-pituitary neuroendocrine circuits, i.e., GnRH-gonadotropins and CRH-ACTH systems. These results suggested that hypothalamic CA input might affect on the activities of gonad and adrenal through modulation of hypothalamus-pituitary function, providing plausible explanation for frequent occurrence of sexual dysfunction and poor stress-response in PD patients.

  • PDF

Multiplication of Infectious Flacherie and Densonucleosis Viruses in the Silkworm, Bombyx mori (가잠의 전염성 연화병 및 농핵병 바이러스 증식에 관한 연구)

  • 김근영;강석권
    • Journal of Sericultural and Entomological Science
    • /
    • v.25 no.2
    • /
    • pp.1-31
    • /
    • 1984
  • Flacherie, as one of the most prevalent silkworm diseases, causes severe economic damage to sericultural industry and its pathogens have been proved to be flacherie virus (FV) and densonucleosis virus (DNV). Multiplications of the viruses in the larvae of the silkworm, Bombyx mori, were studied by the sucrose density gradient centrifugation and electron microscopy. The quantitative and qualitative changes of nucleic acids and proteins were investigated from the midgut and hemolymph in the silkworm larvae infected separately with FV and DNV. The histopathological changes of epithelial cells of infected midgut also were examined by an electron microscope. 1. Purified fractions of FV or DNV in a sucrose density gradient centrifugation yielded one homogenous and sharp peak without a shoulder, suggesting no heterogenous materials in the preparation. Electron microscopy also revealed that FV and DNV were spherical particles, 27nm and 21nm in diameter, respectively. 2. Silkworm larvae showed a decrease in body weight on the 6th day and in midgut weight on the 3rd day after inoculation with FV or DNV. 3. DNA content was higher in the midgut when infected with FV or DNV, but the hemolymph of the infected larvae showed no difference during first 6 days after inoculation, after which DNA concentration declined rapidly. 4. RNA synthesis of silkworm larvae infected separately with FV and DNV was stimulated in the midgut, but RNA content was reduced in the hemolymph at the early stage of virus multiplication. At the late stage of virus multiplication, however, it was extremely reduced in both midgut and hemolymph. 5. The concentration of protein in the midgut and hemolymph of silkworm larvae infected separately with FV and DNV showed no difference from that of the healthy larvae at the early stage of virus multiplication, but it was significantly reduced at the late stage of virus multiplication. 6. There was no difference in the electrophoretic patterns of RNAs extracted from the midgut of healthy or virus-infected larvae. 7. The electrophoresis of proteins extracted from the midgut infected with FV or DNV, when carried out on the 1st and 5th day after virus inoculation, showed no difference from that of the healthy larvae. But, there was an additional band with medium motility in the proteins on the 8th day after virus inoculation, while a band with low mobility shown in the proteins of healthy larvae disappeared in the infected larvae. However, a band with high mobility in the healthy larvae was separated into two fractions in the infected larvae. 8. The electrophoretic pattern of hemolymph proteins of the silkworm larvae infected separately with FV and DNV was similar to that of the healthy larvae, but the concentration of hemolymph proteins in the infected larvae was lower than that of the healthy larvae at the late stage. 9. Two types of inclusion bodies were shown by the double staining of pyronin-methyl green in the columnar cell of the midgut on the 8th day after FV inoculation. 10. Electron microscopy of the infected midgut revealed that the 'cytoplasmic wall' of the goblet cell thickened on the 5th day after FV inoculation and several types of the cytopathogenic structures, such as virus$.$specific vesicles, virus particles, linear structures, tubular structures, and high electron-dense matrices were observed in the cytoplasm of the goblet cell. The virus particles were also observed in the microvilli and the structures similar to spherical virus particles were observed around the virus-specific vesicles, suggesting the virus assembly in the cytoplasm. 11. Fluorescence micrograph of the infected midgut stained with acridine orange showed that the nucleus, the site of DNV multiplication in the columnar cell, enlarged on the 5th day after virus inoculation. 12. Electron microscopic examination of DNV infected midgut revealed that the nucleolus of the columnar cell was broken into granules and those granules dispersed into apical region of the nucleus on the 5th day after virus inoculation. On the 8th day after inoculation, it was also observed that the nucleus of the columnar cell was full with the high electron-dense virogenic stroma which were similar to virus particles. These facts suggest that the virogenic stroma were the sites of virus assembly in the process of DNV multiplication.

  • PDF