• Title/Summary/Keyword: RNAi

Search Result 189, Processing Time 0.028 seconds

Genetically Engineered Mouse Models for Drug Development and Preclinical Trials

  • Lee, Ho
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • Drug development and preclinical trials are challenging processes and more than 80% to 90% of drug candidates fail to gain approval from the United States Food and Drug Administration. Predictive and efficient tools are required to discover high quality targets and increase the probability of success in the process of new drug development. One such solution to the challenges faced in the development of new drugs and combination therapies is the use of low-cost and experimentally manageable in vivo animal models. Since the 1980's, scientists have been able to genetically modify the mouse genome by removing or replacing a specific gene, which has improved the identification and validation of target genes of interest. Now genetically engineered mouse models (GEMMs) are widely used and have proved to be a powerful tool in drug discovery processes. This review particularly covers recent fascinating technologies for drug discovery and preclinical trials, targeted transgenesis and RNAi mouse, including application and combination of inducible system. Improvements in technologies and the development of new GEMMs are expected to guide future applications of these models to drug discovery and preclinical trials.

RNA Interference: a Promising Therapy for Gastric Cancer

  • Felipe, Aledson Vitor;Oliveira, Juliana de;Chang, Paula Yun Joo;Moraes, Andrea Aparecida de Fatima Souza;Silva, Tiago Donizetti da;Tucci-Viegas, Vanina Monique;Forones, Nora Manoukian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5509-5515
    • /
    • 2014
  • Gastric cancer (GC) remains a virtually incurable disease when metastatic and requires early screening tools for detection of early tumor stages. Therefore, finding effective strategies for prevention or recurrence of GC has become a major overall initiative. RNA-interference (RNAi) is an innovative technique that can significantly regulate the expression of oncogenes involved in gastric carcinogenesis, thus constituting a promising epigenetic approach to GC therapy. This review presents recent advances concerning the promising biomolecular mechanism of RNAi for GC treatment.

Thymidylate Synthase and Dihydropyrimidine Dehydrogenase Levels Are Associated with Response to 5-Fluorouracil in Caenorhabditis elegans

  • Kim, Seongseop;Park, Dae-Hun;Shim, Jaegal
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.344-349
    • /
    • 2008
  • 5-Fluorouracil (5-FU), a pyrimidine antagonist, has a long history in cancer treatment. The targeted pyrimidine biosynthesis pathway includes dihydropyrimidine dehydrogenase (DPD), which converts 5-FU to an inactive metabolite, and thymidylate synthase (TS), which is a major target of 5-FU. Using Caenorhabditis elegans as a model system to study the functional and resistance mechanisms of anti-cancer drugs, we examined these two genes in order to determine the extent of molecular conservation between C. elegans and humans. Overexpression of the worm DPD and TS homologs (DPYD-1 and Y110A7A.4, respectively) suppressed germ cell death following 5-FU exposure. In addition, DPYD-1 depletion by RNAi resulted in 5-FU sensitivity, while treatment with Y110A7A.4 RNAi and 5-FU resulted in similar patterns of embryonic death. Thus, the pathway of 5-FU function appears to be highly conserved between C. elegans and humans at the molecular level.

Genetic Modification of Coffee Plants

  • Shinjiro Ogita;Hirotaka Uefuji;Park, Yong-Eui;Tomoko Hatanaka;Mikihiro Ogawa;Yube Yamaguchi;Nozomu Koizumi;Hiroshi Sano
    • Journal of Plant Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.91-94
    • /
    • 2002
  • An efficient molecular breeding technique for coffee plants was developed. In order to produce transgenic coffee plants, we established a model transformation procedure via Agrobacterium method. We isolated a gene encoding a protein possessing 7-methylxanthine methyltransferase (theobromine synthase) activity, and it was designated as Coffea arabica 7-methylxanthine methyl transferase; CaMXMT. Using this clone, we produced transgenic coffee plants, in which the expression of CaMXMT is suppressed by double-stranded RNA interference (RNAi) andlor anti-sense methods. The expression pattern of CaMXMT was analyzed by reverse transcription-PCR method and we found that, in the transformed cell lines, the level of transcripts were obviously suppressed by RNAi. The endogenous level of caffeine in the transformed cells was dramatically reduced in comparison with non-transformed cells.

The Role of Transglutaminase in Double-stranded DNA-Triggered Antiviral Innate Immune Response

  • Yoo, Jae-Wook;Hong, Sun-Woo;Bose, Shambhunath;Kim, Ho-Jun;Kim, Soo-Youl;Kim, So-Youn;Lee, Dong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3893-3898
    • /
    • 2011
  • Cellular uptake of double-stranded DNA (dsDNA) triggers strong innate immune responses via activation of NF-${\kappa}B$ transcription factor. However, the detailed mechanism of dsDNA-mediated innate immune response remains yet to be elucidated. Here, we show that the expression of tazarotene-induced gene 3 (TIG3) is dramatically induced by dsDNA stimulation, and the siRNA-mediated down-regulation of TIG3 mRNA results in significant suppression of dsDNA-triggered cytokine expression. Because TIG3 has been previously shown to physically interact with transglutaminase (TG) 1 to activate TG activity, and TG2 has been shown to induce NF-${\kappa}B$ activity by inducing $I{\kappa}B{\alpha}$ polymerization, we tested whether TG also plays a role in dsDNA-mediated innate immune response. Pre-treatment of TG inhibitors dramatically reduces dsDNA-triggered cytokine induction. We also show that, in HeLa cells, TG2 is the major TG, and TIG3 physically interacts with TG2. Combined together, our results suggest a novel mechanism of dsDNA-triggered innate immune response which is critically dependent on TIG3 and TG2.

Label-free Detection of the Transcription Initiation Factor Assembly and Specific Inhibition by Aptamers

  • Ren, Shuo;Jiang, Yuanyuan;Yoon, Hye Rim;Hong, Sun Woo;Shin, Donghyuk;Lee, Sangho;Lee, Dong-Ki;Jin, Moonsoo M.;Min, Irene M.;Kim, Soyoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1279-1284
    • /
    • 2014
  • The binding of TATA-binding protein (TBP) to the TATA-box containing promoter region is aided by many other transcriptional factors including TFIIA and TFIIB. The mechanistic insight into the assembly of RNA polymerase II preinitation complex (PIC) has been gained by either directly altering a function of target protein or perturbing molecular interactions using drugs, RNAi, or aptamers. Aptamers have been found particularly useful for studying a role of a subset of PIC on transcription for their ability to inhibit specific molecular interactions. One major hurdle to the wide use of aptamers as specific inhibitors arises from the difficulty with traditional assays to validate and determine specificity, affinity, and binding epitopes for aptamers against targets. Here, using a technique called the bio-layer interferometry (BLI) designed for a label-free, real-time, and multiplexed detection of molecular interactions, we studied the assembly of a subset of PIC, TBP binding to TATA DNA, and two distinct classes of aptamers against TPB in regard to their ability to inhibit TBP binding to TFIIA or TATA DNA. Using BLI, we measured not only equilibrium binding constants ($K_D$), which were overall in close agreement with those obtained by electrophoretic mobility shift assay, but also kinetic constants of binding ($k_{on}$ and $k_{off}$), differentiating aptamers of comparable KDs by their difference in binding kinetics. The assay developed in this study can readily be adopted for high throughput validation of candidate aptamers for specificity, affinity, and epitopes, providing both equilibrium and kinetic information for aptamer interaction with targets.

Inhibition of Herpesvirus-6B RNA Replication by Short Interference RNAs

  • Yoon, Jong-Sub;Kim, Sun-Hwa;Shin, Min-Chul;Lee, Dong-Gun;Hong, Seong-Karp;Jung, Yong-Tae;Khang, In-Gu;Shin, Wan-Shik;Kim, Chun-Choo;Paik, Soon-Young
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.383-385
    • /
    • 2004
  • RNA interference (RNAi) is a process of sequence-specific gene silencing, which is initiated by double-stranded RNA (dsRNA). RNAi may also serve as an antiviral system in vertebrates. This study describes the inhibition of herpesvirus-6B (HHV-6B) replication by short interference RNAs (siRNAs) that are targeted to the U38 sequence that encodes DNA polymerase. When virus-infected SupT1 cells were treated by siRNA, these cells blocked the cytopathic effect (CPE) and detected the HHV-6B antibody-negative in indirect immunofluorescence assays (IFA). Our result suggests that RNAi can efficiently block Herpesvirus-6B replication.

Functional Genomic Approaches Using the Nematode Caenorhabditis elegans as a Model System

  • Lee, Jun-Ho;Nam, Seung-Hee;Hwang, Soon-Baek;Hong, Min-Gi;Kwon, Jae-Young;Joeng, Kyu-Sang;Im, Seol-Hee;Shim, Ji-Won;Park, Moon-Cheol
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.107-113
    • /
    • 2004
  • Since the completion of the genome project of the nematode C. elegans in 1998, functional genomic approaches have been applied to elucidate the gene and protein networks in this model organism. The recent completion of the whole genome of C. briggsae, a close sister species of C. elegans, now makes it possible to employ the comparative genomic approaches for identifying regulatory mechanisms that are conserved in these species and to make more precise annotation of the predicted genes. RNA interference (RNAi) screenings in C. elegans have been performed to screen the whole genome for the genes whose mutations give rise to specific phenotypes of interest. RNAi screens can also be used to identify genes that act genetically together with a gene of interest. Microarray experiments have been very useful in identifying genes that exhibit co-regulated expression profiles in given genetic or environmental conditions. Proteomic approaches also can be applied to the nematode, just as in other species whose genomes are known. With all these functional genomic tools, genetics will still remain an important tool for gene function studies in the post genome era. New breakthroughs in C. elegans biology, such as establishing a feasible gene knockout method, immortalized cell lines, or identifying viruses that can be used as vectors for introducing exogenous gene constructs into the worms, will augment the usage of this small organism for genome-wide biology.

Improving Cellulase Production in Trichoderma koningii Through RNA Interference on ace1 Gene Expression

  • Wang, Shao-Wen;Xing, Miao;Liu, Gang;Yu, Shao-Wen;Wang, Juan;Tian, Sheng-Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1133-1140
    • /
    • 2012
  • Ribonucleic acid interference (RNAi) inhibits the expression of target genes in a sequence-specific manner, and shows potential for gene knockdown in filamentous fungi, in which the locus-specific gene knockout occurs in low frequency. In this study, the function of the repressor of cellulase expression I (ACEI) was verified in Trichoderma koningii (T. koningii) YC01 through RNAi, and ace1-silenced strains with improved cellulase productivity were obtained. An expression cassette that transcribed the interfering double-stranded RNA (dsRNA) of ace1 was constructed and transformed into T. koningii, and the transformants, in which the expression of ace1 was successfully silenced, were selected. As a result of the ace1 gene silencing, the expression levels of the main cellulase and xylanase genes were elevated, and the enhanced production of total proteins, cellulase, and xylanase was observed in the cultivation. In addition, the down-regulation of ace1 resulted in an increasing expression of xyr1, but no clear variation in the expression of cre1, which suggested that ACEI acted as a repressor of the xyr1 transcription, but was not involved in the regulation of the cre1 expression. The results of this work indicate that ace1 is a valid target gene for enhancing enzyme production in T. koningii, and RNAi is an appropriate tool for improving the properties of industrial fungi.

RNAi-induced K-Ras Gene Silencing Suppresses Growth of EC9706 Cells and Enhances Chemotherapy Sensitivity of Esophageal Cancer

  • Wang, Xin-Jie;Zheng, Yu-Ling;Fan, Qing-Xia;Zhang, Xu-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6517-6521
    • /
    • 2012
  • To analyze the growth, proliferation, apoptosis, invasiveness and chemotherapy sensitivity of EC9706 cells after K-Ras gene silencing, an expression carrier pSilencer-siK-Ras was constructed, and the EC9706 cell line was transfected using a liposome technique. Six groups were established: Control, siRNA NC (transfected with empty vector pSilencer2.1); Ras siRNA (transfected with pSilencer-siK-Ras2); Paclitaxel; Paclitaxel + siRNA NC; and Ras siRNA + Paclitaxel. After the treatment, RT-PCR, Western blotting, MTT assay, flow cytometry and the Transwell technique were used to assess expression of K-Ras mRNA and protein in EC9706 cells, as well as cell growth, proliferation, apoptosis and invasiveness. The effect of Paclitaxel chemotherapy was also tested. pSilencer-siK-Ras2 effectively down-regulated expression of K-Ras mRNA and protein in EC9706 cells, growth being significantly inhibited. Flow cytometry indicated obvious apoptosis of cells in the experimental group, with arrest in the G1 phase; cell migration ability was also reduced. After pSilencer-siK-Ras2 transfection or the addition of Paclitaxel, EC9706 cells were suppressed to different extents; the suppressive effect was strengthened by combined treatment. The results suggested that RNAi-induced K-Ras gene silencing could enhance chemotherapy sensitivity of esophageal cancer.