• Title/Summary/Keyword: RNAi

Search Result 189, Processing Time 0.021 seconds

Gene expression in plant according to RNAi treatment of the tobacco whitefly (RNAi 기법으로 담배가루이 방제를 위해 선발된 유전자의 식물체내 발현)

  • Kim, Jeong-Hee;Seo, Eun-Young;Kim, Jung-Kyu;Lim, Hyoun-Sub;Yu, Yong-Man;Youn, Young-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • Three genes selected from cDNA library of tobacco whitefly, Bemisia tabaci, were checked whether these genes expressed in plant or not, and confirmed the change of gene expression using qRT-PCR in the tobacco whitefly. First of all, three genes were inserted in Tobacco rattle virus (TRV) RNA2 vector using Sac I and Xho I restriction enzymes, and conducted agro-infiltration in tobacco plants (Nicotiana benthamianana). And then, it was confirmed that TRV RNA2 vector and genes inserted in TRV RNA2 vector were expressed in plant. So, after feeding the tobacco whitefly the plants inoculated the genes and induced RNAi of the genes, we plan to confirm the RNAi in the whitefly and investigate the changes of gene expression through the qRT-PCR.

RNA Interference as a Plausible Anticancer Therapeutic Tool

  • Ramachandran, Puthucode Venkatakrishnan;Ignacimuthu, Savarimuthu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2445-2452
    • /
    • 2012
  • RNA interference has created a breakthrough in gene silencing technology and there is now much debate on the successful usage of RNAi based methods in treating a number of debilitating diseases. Cancer is often regarded as a result of mutations in genomic DNA resulting in faulty gene expression. The occurrence of cancer can also be influenced by epigenetic irregularities in the chromatin structure which leads to alterations and mutations in DNA resulting in cancer cell formation. A number of therapeutic approaches have been put forth to treat cancer. Anti cancer therapy often involves chemotherapy targeting all the cells in common, whereby both cancer cells as well as normal cells get affected. Hence RNAi technology has potential to be a better therapeutic agent as it is possible to deactivate molecular targets like specific mutant genes. This review highlights the successful use of RNAi inducers against different types of cancer, thereby paving the way for specific therapeutic medicines.

Multiple shRNA expressing vector enhances efficiency of gene silencing

  • Song, Jun;Giang, An;Lu, Yingchun;Pang, Shen;Chiu, Robert
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.358-362
    • /
    • 2008
  • RNA interference (RNAi) is the process of sequence-specific gene silencing. However, RNAi efficiency still needs to be improved for effective inhibition of target genes. We have developed an effective strategy to express multiple shRNAs (small hairpin RNA) simultaneously using multiple RNA Polymerase III (Pol III) promoters in a single vector. Our data demonstrate that multiple shRNAs expressed from Pol III promoters have a synergistic effect in repressing the target gene. Silencing of endogenous cyclophilin A (CypA) or key HIV viral genes by multiple shRNAs results in significant inhibition of the target gene.

The AP-3 Clathrin-associated Complex Is Essential for Embryonic and Larval Development in Caenorhabditis elegans

  • Shim, Jaegal;Lee, Junho
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.452-457
    • /
    • 2005
  • The adaptor protein (AP) complexes are involved in membrane transport of many proteins. There are 3 AP complexes in C. elegans unlike mammals that have four. To study the biological functions of the AP-3 complexes of C. elegans, we sought homologues of the mouse and human genes that encode subunits of the AP-3 complexes by screening C. elegans genomic and EST sequences. We identified single copies of homologues of the ${\mu}3$, ${\sigma}3$, ${\beta}3$ and ${\delta}$ genes. The medium chain of AP-3 is encoded by a single gene in C. elegans but two different genes in mammals. Since there are no known mutations in these genes in C. elegans, we performed RNAi to assess their functions in development. RNAi of each of the genes caused embryonic and larval lethal phenotypes. APM-3 is expressed in most cells, particularly strongly in spermatheca and vulva. We conclude that the products of the C. elegans ${\mu}3$, ${\sigma}3$, ${\beta}3$ and d genes are essential for embryogenesis and larval development.

Comparison of RNA Interference-mediated Gene Silencing and T-DNA Integration Techniques for Gene Function Analysis in Chinese Cabbage (RNA Interference 및 T-DNA Integration 방법에 의한 배추 기능유전자 Silencing 효과 비교)

  • Yu, Jae-Gyeong;Lee, Gi-Ho;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.734-742
    • /
    • 2012
  • To compare RNA interference-mediated gene silencing technique and T-DNA integration for gene function analysis in Chinese cabbage, BrSAMS-knockout (KO) line and BrSAMS-knockdown (KD) line were used. The KO line had lost the function of a Brassica rapa S-adenosylmethionine synthetase (BrSAMS) gene by T-DNA insertion and the KD line had shown down-regulated BrSAMS genes' expression by dsRNA cleavage. From microarray results of the KO and KD lines, genes linked to SAMS such as sterol, sucrose, homogalacturonan biosynthesis and glutaredoxin-related protein, serine/threonine protein kinase, and gibberellin-responsive protein showed distinct differences in their expression levels. Even though one BrSAMS gene in the KO line was broken by T-DNA insertion, gene expression pattern of that line did not show remarkable differences compared to wild type control. However, the KD line obtained by RNAi technique showed prominent difference in its gene expression. Besides, change of polyamine and ethylene synthesis genes directly associated with BrSAMS was displayed much more in the KD line. In the microarray analysis of the KO line, BrSAMS function could not be clearly defined because of BrSAMS redundancy due to the genome triplication events in Brassicaceae. In conclusion, we supposed that gene knock-down method by RNAi silencing is more effective than knock-out method by T-DNA insertion for gene function analysis of polyploidy crops such as Chinese cabbage.

Downstream Genes Regulated by Bcl2l10 RNAi in the Mouse Oocytes

  • Kim, Eun-Ah;Kim, Kyeoung-Hwa;Lee, Hyun-Seo;Lee, Su-Yeon;Kim, Eun-Young;Seo, You-Mi;Bae, Jee-Hyeon;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.15 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • Previously, we have shown that Bcl2l10 as a member of Bcl-2 family, key regulators of the apoptotic process, is dominantly expressed in oocytes of ovary but several member of the Bcl-2 family are not expressed in oocytes. Recent our studies had been processed about roles and regulatory mechanisms of Bcl2l10 in oocytes. Microinjection of Bcl2l10 RNAi into the cytoplasm of germinal vesicle oocytes resulted in metaphase I (MI) arrest and exhibited abnormalities in their spindles and chromosome configurations (Yoon et al., 2009). The present study was conducted to elucidate the downstream genes regulated by Bcl2l10 and signaling networks in Bcl2l10 RNAi microinjected oocytes by using microarray analysis. Surprisingly, we found that a large proportion of genes regulated by Bcl2l10 RNAi were involved in the cell cycle and actin skeletal system regulation as important upstream genes of Bcl2l10. Among the transcripts with highly significant fold changes more than 2-fold, Tpx2 and Cep192 are 16.1- and 8.2-fold down regulated respectively by Bcl2l10 RNAi. Tpx2 and Cep192 are known as cofactors that control Aurora A kinase activity and localization. Therefore, we concluded that Bcl2l10 may have important roles during oocyte meiosis as functional upstream regulator of Tpx2 and Cep192.

Expression of Gas6 Receptors, Tyro3, Axl, and Mertk, in Oocytes and Embryos and Effects of Mertk RNAi on the Oocyte Maturation

  • Kim, Kyeoung-Hwa;Lee, Sang-Eun;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.16 no.3
    • /
    • pp.195-204
    • /
    • 2012
  • Recently, we reported growth arrest-specific gene 6 (Gas6) as a new maternal effect gene (MEG), that expressed in the oocytes but functioned principally during embryogenesis. Gas6 RNAi-treated oocytes developed to metaphase II (MII) stage but they have affected M-phase promoting factor (MPF) activity and incurred abnormal pronuclear (PN) formation during fertilization. Gas6 is a ligand of TAM family members (Tyro3, Axl and Mertk) of receptor tyrosine kinase (RTK). Purpose of the present study was to evaluate the expression of Tyro3, Axl and Mertk transcripts in oocytes and early embryos. Expression of Gas6 and Mertk mRNA was detectable in oocytes and follicular cells, while Tyro3 and Axl mRNA was expressed only in follicular cells. Expression of Mertk mRNA was relatively constant during oocytes maturation and embryogenesis, but the other receptors, Tyro3 and Axl, were not expressed in oocytes and PN stage of embryos at all. Knockdown of Mertk mRNA and protein by using sequence-specific Mertk double strand RNA (dsRNA) did not affect oocytes maturation. In this case, however, contrary to the ligand Gas6 RNA interference (RNAi), MPF activity had not been changed by Mertk RNAi. Therefore, we concluded that the Gas6-Mertk signaling is not directly related to the oocyte maturation. It is still required to study further regarding the function of Mertk as the receptor of Gas6 during preimplantational early embryogenesis.

Validation of Gene Silencing Using RNA Interference in Buffalo Granulosa Cells

  • Monga, Rachna;Datta, Tirtha Kumar;Singh, Dheer
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1529-1540
    • /
    • 2011
  • Silencing of a specific gene using RNAi (RNA interference) is a valuable tool for functional analysis of a target gene. However, information on RNAi for analysis of gene function in farm animals is relatively nil. In the present study, we have validated the interfering effects of siRNA (small interfering RNA) using both quantitative and qualitative gene silencing in buffalo granulosa cells. Qualitative gene knockdown was validated using a fluorescent vector, enhanced green fluorescence protein (EGFP) and fluorescently labeled siRNA (Cy3) duplex. While quantitatively, siRNA targeted against the luciferase and CYP19 mRNA was used to validate the technique. CYP19 gene, a candidate fertility gene, was selected as a model to demonstrate the technique optimization. However, to sustain the expression of CYP19 gene in culture conditions using serum is difficult because granulosa cells have the tendency to luteinize in presence of serum. Therefore, serum free culture conditions were optimized for transfection and were found to be more suitable for the maintenance of CYP19 gene transcripts in comparison to culture conditions with serum. Decline in fluorescence intensity of green fluorescent protein (EGFP) was observed following co-transfection with plasmid generating siRNA targeted against EGFP gene. Quantitative decrease in luminescence was seen when co-transfected with siRNA against the luciferase gene. A significant suppressive effect on the mRNA levels of CYP19 gene at 100 nM siRNA concentration was observed. Also, measurement of estradiol levels using ELISA (enzyme-linked immunosorbent assay) showed a significant decline in comparison to control. In conclusion, the present study validated gene silencing using RNAi in cultured buffalo granulosa cells which can be used as an effective tool for functional analysis of target genes.