• 제목/요약/키워드: RNAi

검색결과 189건 처리시간 0.028초

New Therapeutic Schedule for Prostatic Cancer-3 Cells with ET-1 RNAi and Endostar

  • Zhang, Hao-Jie;Qian, Wei-Qing;Chen, Ran;Sun, Zhong-Quan;Song, Jian-Da;Sheng, Lu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10079-10083
    • /
    • 2015
  • Background: Endothelin-1 and Endostar are both significant for the progression, proliferation, metastasis and invasion of cancer. In this paper, we studied the effect of ET-1 RNAi and Endostar in PC-3 prostatic cancer cells. Materials and Methods: The lentiviral vector was used in the establishment of ET-1 knockdown PC-3 cells. Progression and apoptosis were assessed by CKK-8 and flow cytometry, respectively. Transwell assay was used to estimate invasion and signaling pathways were studied by Western blotting. Results: ET-1 mRNA and protein in ET-1 knockdown PC-3 cells were reduced to 26.4% and 22.4% compared with control group, respectively. ET-1 RNAi and Endostar both were effective for the suppression of progression and invasion of PC-3 cells. From Western blotting results, the effects of ET-1 regulation and Endostar on PC-3 cells were at least related to some signaling pathways involving PI3K/Akt/Caspase-3, Erk1/2/Bcl-2/Caspase-3 and MMPs (MMP-2 and MMP-9). Furthermore, combined treatment of ET-1RNAi and Endostar was found to be more effective than single treatment. Conclusions: Both ET-1 RNAi and Endostar can inhibit the progression and invasion of PC-3 cells, but combined treatment might be a better therapeutic schedule.

RNAi Suppression of RPN12a Decreases the Expression of Type-A ARRs, Negative Regulators of Cytokinin Signaling Pathway, in Arabidopsis

  • Ryu, Moon Young;Cho, Seok Keun;Kim, Woo Taek
    • Molecules and Cells
    • /
    • 제28권4호
    • /
    • pp.375-382
    • /
    • 2009
  • The 26S proteasome is a 2-MDa complex with a central role in protein turn over. The 26S proteasome is comprised of one 20S core particle and two 19S regulatory particles (RPs). The RPN12a protein, a non-ATPase subunit of the 19S RP, was previously shown to be involved in cytokinin signaling in Arabidopsis. To further investigate cellular roles of RPN12a, RNAi transgenic plants of RPN12a were constructed. As expected, the 35S:RNAi-RPN12a plants showed cytokinin signaling defective phenotypes, including abnormal formation of leaves and inflorescences. Furthermore, RNAi knock-down transgenic plants exhibited additional unique phenotypes, including concave and heart-shape cotyledons, triple cotyledons, irregular and clustered guard cells, and defects in phyllotaxy, all of which are typical for defective cytokinin signaling. We next examined the mRNA level of cytokinin signaling components, including type-A ARRs, type-B ARRs, and CRFs. The expression of type-A ARRs, encoding negative regulators of cytokinin signaling, was markedly reduced in 35S:RNAi-RPN12a transgenic plants relative to that in wild type plants, while type-B ARRs and CRFs were unaffected. Our results also indicate that in vivo stability of the ARR5 protein, a negative regulator of cytokinin signaling, is mediated by the 26S proteasome complex. These results suggest that RPN12a participates in feedback inhibitory mechanism of cytokinin signaling through modulation of the abundance of ARR5 protein in Arabidopsis.

GBSSI 유전자 3'UTR 영역의 발현 억제 dsRNAi 벡터를 이용한 아밀로스함량 조절 벼 개발 (Variation of Amylose Content Using dsRNAi Vector by Targeting 3'-UTR Region of GBSSI Gene in Rice)

  • 박향미;최만수;천아름;이정희;김명기;김연규;신동범;이장용;김율호
    • 한국육종학회지
    • /
    • 제42권5호
    • /
    • pp.515-524
    • /
    • 2010
  • 본 연구에서는 RNAi 기작을 이용하여 식미에 중요한 영향을 미치는 아밀로스 함량을 다양화하기 위해 GBSSI 유전자의 3'-UTR 부위를 targeting하여 dsRNA를 생성시킬 수 있는 운반체를 제작하고, 벼에 형질전환 하였다. 작성된 형질전환체들을 대상으로 $I_2$-KI 용액 반응과 아밀로스 함량을 분석한 결과, $I_2$-KI 용액에 대한 반응은 waxy 타입으로 나타났으나 아밀로스 함량은 찰벼와 저아밀로스 벼 사이에 해당되는 범위를 보였다. 원품종과 형질전환체 간의 아밀로펙틴 사슬 분포의 차이를 비교한 결과, 단쇄에 해당되는 A1과 B1 사슬의 분포는 감소한 반면, 중쇄에 해당되는 B2와 장쇄인 B3 사슬의 분포는 다소 증가하였으며, B3 사슬의 분포비율은 사용된 품종에 따라 약간의 차이를 보였다. 배유 단면의 전자현미경적 구조를 비교한 결과, 원품종에 비해 형질전환체의 전분립 크기가 작아지고 쪼개짐의 형태가 완만한 굴곡을 보였다. 이러한 결과를 바탕으로, RNAi 기술을 이용하여 다양한 아밀로스 함량이 조절된 형질전환 벼를 개발하기 위해서는 targeting 부위를 결정하는 것이 하나의 중요한 전략이 될 수 있음을 확인하였다.

생쥐의 난소와 난자에서의 Obox4의 동정과 RNAi를 이용한 기능연구 (Characterization and Functional Analysis of Obox4 during Oocyte Maturation by RNA Interference)

  • 이현서;이경아
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제34권4호
    • /
    • pp.293-303
    • /
    • 2007
  • 목 적: 본 연구는 정소에서만 발현한다고 알려져 있는 Obox4에 대한 난소 및 난자에서의 동정과 난자 성숙에 미치는 영향을 알아보고자 수행하였다. 연구방법: RT-PCR을 이용하여 발달 단계별 난소와 정소, 난자에서의 Obox4의 mRNA발현을 확인하였다. 난자 성숙동안에 Obox4의 기능을 알아보기 위해 GV 난자의 세포질에 Obox4의 dsRNA를 미세 주입하는 RNAi 방법을 사용하였다. Obox4 dsRNA를 미세주입한 후, M16 배지에서 16시간 동안 배양하거나, IBMX가 첨가된 M16 배지에서 24시간 동안 배양하면서 난자 성숙율 및 spindle, 염색체의 배치와 형상의 변화를 관찰하였다. Obox4 RNAi후 여러 유전자들의 발현 양의 변화를 RT-PCR을 이용하여 확인하였다. 결 과: Obox4의 mRNA는 난소에서 다른 Obox family들과 비교하여 낮게 발현함을 관찰하였다. Obox4 RNAi를 위해 합성된 dsRNA가 Obox4의 발현만을 특정적으로 감소시켰다. Obox4 RNAi후에 M16배지에서 16시간 배양한 군에서의 난자 성숙률은 대조군의 난자 성숙률과 별다른 차이를 보이지 않았다. 흥미롭게도, IBMX가 첨가된 M16 배지에서 24시간 동안 배양한 군에서는 대조군의 난자들이 GV 상태에 정지되어 있는데 반해, Obox4 RNAi군에서는 IBMX에서 존재함에도 불구하고, MI과 MII로의 난자 성숙이 진행되었다. 또한 Obox4 RNAi 난자의 spindle 구조는 완전히 사라지고 매우 응축되어 있는 염색체를 확인하였다. 결 론: 본 연구에서는, 생쥐의 난소 및 난자에서 Obox4의 발현을 처음으로 밝혔으며, 난자 성숙 동안에 Obox4가 염색체 분리 및 spindle 형성에 관여되어 있는 유전자임을 확인하였다. 또한, CAMP에 의해 조절되는 GV-arrest mechanism에 Obox4가 매우 밀접하게 연관되어 있을 것임을 알게 되었다.

Dual-Target Gene Silencing by Using Long, Synthetic siRNA Duplexes without Triggering Antiviral Responses

  • Chang, Chan Il;Kang, Hye Suk;Ban, Changill;Kim, Soyoun;Lee, Dong-ki
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.689-695
    • /
    • 2009
  • Chemically synthesized small interfering RNAs (siRNAs) can specifically knock-down expression of target genes via RNA interference (RNAi) pathway. To date, the length of synthetic siRNA duplex has been strictly maintained less than 30 bp, because an early study suggested that double-stranded RNAs (dsRNAs) longer than 30 bp could not trigger specific gene silencing due to the induction of non-specific antiviral interferon responses. Contrary to the current belief, here we show that synthetic dsRNA as long as 38 bp can result in specific target gene silencing without non-specific antiviral responses. Using this longer duplex structure, we have generated dsRNAs, which can simultaneously knock-down expression of two target genes (termed as dual-target siRNAs or dsiRNAs). Our results thus demonstrate the structural flexibility of gene silencing siRNAs, and provide a starting point to construct multifunctional RNA structures. The dsiRNAs could be utilized to develop a novel therapeutic gene silencing strategy against diseases with multiple gene alternations such as viral infection and cancer.

Gene silencing assessment for genes from recalcitrant or poorly studied plant species

  • Kamoi, Takahiro;Eady, Colin Charles;Imai, Shinsuke
    • Plant Biotechnology Reports
    • /
    • 제2권3호
    • /
    • pp.199-206
    • /
    • 2008
  • We have developed an efficient system of assessing the ability of a gene silencing cassette to silence transcripts from recalcitrant or poorly studied plant species by using a model plant as a host for the gene of interest. Tobacco plants transgenic for Lachrymatory Factor Synthase (LFS) enzyme activity from onion were first produced by introducing a CaMV 35S-onion-lfs gene construct. These plants were then subjected to a second transformation with an RNAi construct directed against the lfs gene sequence. LFS enzyme activity assay showed that the transgenic plants, containing both the lfs gene and the RNAi construct, had significantly reduced LFS activity. This observation was supported by Western analysis for the LFS protein and further validated by quantitative RT-PCR analysis that demonstrated a significant reduction in the lfs transcript level in the dual transformants. In this work, we have demonstrated that the RNAi construct is a suitable candidate for the development of a non-lachrymatory onion. Our model plant RNAi system has wide-reaching applications for assessment and targeting of plant secondary pathway genes, from poorly studied or recalcitrant plant species, that are important in the pharmacological, food and process industries.

RNAi에 의한 담배가루이(Bemisia tabaci, 가루이과, 노린재목)의 개체군 밀도변화 (Change of population density of tobacco whitefly (Bemisia tabaci, Aleyrodidae, Hemiptera) by RNAi)

  • 고나연;윤영남
    • 농업과학연구
    • /
    • 제42권1호
    • /
    • pp.7-13
    • /
    • 2015
  • Ninety genes randomly selected from tobacco whitefly (Bemisia tabaci) cDNA library was studied for selecting target gene in order to control of tobacco whitefly using TRV-VIGS vector (tobacco rattle virus-virus induced gene silencing vector) with RNAi. First of all, the occurrence of B. tabaci adult according to agro-infiltration of TRV was no significant difference. And that of TRV inserted tobacco whitefly cDNA showed a significant difference in each sample. P CV and N CV sample were more than 80% could be confirmed in 5 samples, for example, wh11, wh36, wh46, wh50 and wh71. Lastly, the occurrence of nymph and egg also showed a significant difference in each sample. That could be confirmed in 11 samples, for example, wh01, wh09, wh10, wh15, wh16, wh23, wh24, wh48, wh64 and wh66. In case of wh46, wh50 and wh71 sample could be confirmed that occurrence of B. tabaci adult was many, but occurrence of B. tabaci nymph and egg was a little. So sample showed a physioecological good effect to control of whitefly need to be investigated variation of gene expression in whitefly body using qRT-PCR through individual test.

Cosuppression and RNAi induced by Arabidopsis ortholog gene sequences in tobacco

  • Oka, Shin-Ichiro;Midorikawa, Kaoru;Kodama, Hiroaki
    • Plant Biotechnology Reports
    • /
    • 제4권3호
    • /
    • pp.185-192
    • /
    • 2010
  • The Arabidopsis ${\omega}$-3 fatty acid desaturase (AtFAD7) catalyzes the synthesis of trienoic fatty acids (TA). A transgenic tobacco line, T15, was produced by a sense AtFAD7 construct and showed a cosuppression-like phenotype, namely extremely low TA levels. The sequence similarity between AtFAD7 and a tobacco ortholog gene, NtFAD7, was moderate (about 69%) in the coding sequences. AtFAD7 siRNAs accumulated at a high level, and both AtFAD7 and NtFAD7 mRNAs are degraded in T15 plants. The low-TA phenotype in T15 was dependent on a tobacco RNA-dependent RNA polymerase6 (NtRDR6). We also produced tobacco RNAi plants targeting AtFAD7 gene sequences. The AtFAD7 siRNA level was trace, which was associated with a slight reduction in leaf TA level. Unexpectedly, this RNAi plant showed an increased NtFAD7 transcript level. To investigate the effect of translational inhibition on stability of the NtFAD7 mRNAs, leaves of the wild-type tobacco plants were treated with a translational inhibitor, cycloheximide. The level of NtFAD7 mRNAs significantly increased after cycloheximde treatment. These results suggest that the translational inhibition by low levels of AtFAD7 siRNAs or by cycloheximide increased stability of NtFAD7 mRNA. The degree of silencing by an RNAi construct targeting the AtFAD7 gene was increased by co-existence of the AtFAD7 transgene, where NtRDR6-dependent amplification of siRNAs occurred. These results indicate that NtRDR6 can emphasize silencing effects in both cosuppression and RNAi.

Tombus 바이러스의 RNAi Suppressor p19 유전자에 의한 Chlamydomonas reinhardtii의 형질전환 (Genetic Transformation of Chlamydomonas reinhardtii with the RNAi Suppressor p19 Gene of Tombus Virus)

  • 정원중;유장렬
    • Journal of Plant Biotechnology
    • /
    • 제34권4호
    • /
    • pp.307-312
    • /
    • 2007
  • 클라미도모나스 (Chlamydomonas reinhardtii)에서 Tombus 바이러스의 p19 유전자가 RNAi suppressor로서 기능하는 지는 조사하기 위하여 형질전환을 수행하였다. Southern분석을 통하여 p19 유전자가 1 copy에서 여러 copy로 도입된 형질전환체를 선발하였다. MAA7 유전자의 3'UTR 부위의 inverted repeat (IR) DNA가 형질전환되어 제작된 #33 strain을 p19유전자로 다시 형질전환 한 결과, MAA7 mRNA의 발현 양이 변하여 일정하지 않고 교란되었으며, 5-FI가 첨가된 배지에서 증식이 저해되었다. 증식이 저해된 것은 p19 유전자에 의한 silencing의 suppression이 일어난 것으로 간주할 수 있다. 그러나 MAA7 mRNA의 발현양이 전반적으로 증가하지 않고 발현양의 교란이 일어났으므로 p19 유전자에 의한 silencing의 suppression으로 보기 어렵다. 따라서 본 연구에 사용된 p19 유전자가 클라미도모나스에서는 codon usage가 상이하여 단백질 발현양이 충분치 않아서 silencing의 suppression을 완전하게 하지 못하거나 고등식물에서 일어나는 방식과는 다른 방식으로 suppression한다고 할 수 있다.

Downstream Networking of $Zap70$ in Meiotic Cell Cycle of the Mouse Oocytes

  • Kim, Hyun-Jung;Lee, Hyun-Seo;Kim, Eun-Young;Lee, Kyung-Ah
    • 한국발생생물학회지:발생과생식
    • /
    • 제16권1호
    • /
    • pp.59-67
    • /
    • 2012
  • Previously, we found that $Zap70$ (Zeta-chain-associated protein kinase) expressed in the mouse oocytes and played significant role in completion of meiosis specifically at MI-MII (metaphase I-II) transition. Microinjection of $Zap70$ dsRNA into the cytoplasm of germinal vesicle oocyte resulted in MI arrest, and exhibited abnormalities in their spindles and chromosome configurations. The purpose of this study was to determine the mechanisms of action of $Zap70$ in oocyte maturation by evaluating downstream signal networking after $Zap70$ RNAi (RNA interference). The probe hybridization and data analysis were used by Affymetrix Gene Chip Mouse Genome 430 2.0 array and GenPlex 3.0 (ISTECH, Korea) software, respectively. Total 1,152 genes were up (n=366) and down (n=786) regulated after $Zap70$ RNAi. Among those genes changed, we confirmed the expressional changes of the genes involved in the regulation of actin cytoskeleton and MAPK (mitogen-activated protein kinase) signaling pathway, since the phenotypes of $Zap70$ RNAi in oocytes were found in the changes in the chromosome separation and spindle structures. We confirmed the changes in gene expression in the actin skeletal system as well as in the MAPK signaling pathway, and concluded that these changes are main cause of the aberrant chromosome arrangement and abnormal spindles after $Zap70$ RNAi.