• Title/Summary/Keyword: RNA4

Search Result 5,233, Processing Time 0.039 seconds

Mutational Analysis of an Essential RNA Stem-loop Structure in a Minimal RNA Substrate Specifically Cleaved by Leishmania RNA Virus 1-4 (LRV1-4) Capsid Endoribonuclease

  • Ro, Youngtae;Patterson, Jean L.
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.239-247
    • /
    • 2003
  • The LRV1-4 capsid protein possesses an endoribonuclease activity that is responsible for the single site-specific cleavage in the 5' untranslated region (UTR) of its own viral RNA genome and the formation of a conserved stem-loop structure (stem-loop IV) in the UTR is essential for the accurate RNA cleavage by the capsid protein. To delineate the nucleotide sequences, which are essential for the correct formation of the stem-loop structure for the accurate RNA cleavage by the viral capsid protein, a wildtype minimal RNA transcript (RNA 5' 249-342) and several synthetic RNA transcripts encoding point-mutations in the stem-loop region were generated in an in vitro transcription system, and used as substrates for the RNA cleavage assay and RNase mapping studies. When the RNA 5' 249-342 transcript was subjected to RNase T1 and A mapping studies, the results showed that the predicted RNA secondary structure in the stem-loop region using FOLD analysis only existed in the presence of Mg$\^$2+/ ions, suggesting that the metal ion stabilizes the stem-loop structure of the substrate RNA in solution. When point-mutated RNA substrates were used in the RNA cleavage assay and RNase T1 mapping study, the specific nucleotide sequences in the stem-loop region were not required for the accurate RNA cleavage by the viral capsid protein, but the formation of a stem-loop like structure in a region (nucleotides from 267 to 287) stabilized by Mg$\^$2+/ ions was critical for the accurate RNA cleavage. The RNase T1 mapping and EMSA studies revealed that the Ca$\^$2+/ and Mn$\^$2+/ ions, among the reagents tested, could change the mobility of the substrate RNA 5' 249-342 on a gel similarly to that of Mg$\^$2+/ ions, but only Ca$\^$2+/ ions identically showed the stabilizing effect of Mg$\^$2+/ ions on the stem-loop structure, suggesting that binding of the metal ions (Mg$\^$2+/ or Ca$\^$2+/) onto the RNA substrate in solution causes change and stabilization of the RNA stem-loop structure, and only the substrate RNA with a rigid stem-loop structure in the essential region can be accurately cleaved by the LRV1-4 viral capsid protein.

Effects of spTho1 Deletion and Over-Expression on mRNA Export in Fission Yeast (분열효모에서 spTho1 유전자의 결실과 과발현이 생장 및 mRNA Export에 미치는 영향)

  • Cho, Ye-Seul;Yoon, Jin-Ho
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.401-404
    • /
    • 2010
  • Tho1 is a RNA-binding protein that assembles co-transcriptionally onto the nascent mRNA and is thought to be involved in mRNP biogenesis and mature mRNA export to cytoplasm in budding yeast. In fission yeast Schizosaccharomyces pombe, a homologue of THO1 (spTho1) was identified based on sequence alignment. A deletion mutant in a diploid strain was constructed by replacing one of spTho1-coding region with an ura4+ gene using one-step gene disruption method. Tetrad analysis showed that the spTho1 was not essential for growth. The spTho1 mutant did not show any defects of bulk mRNA export. However, over-expression of spTho1 from strong nmt1 promoter caused the growth defects and accumulation of poly(A)$^+$ RNA in the nucleus. These results suggest that spTho1 is involved in mRNA export from the nucleus to cytoplasm though it is not essential.

Analysis of Whole Transcriptome Sequencing Data: Workflow and Software

  • Yang, In Seok;Kim, Sangwoo
    • Genomics & Informatics
    • /
    • v.13 no.4
    • /
    • pp.119-125
    • /
    • 2015
  • RNA is a polymeric molecule implicated in various biological processes, such as the coding, decoding, regulation, and expression of genes. Numerous studies have examined RNA features using whole transcriptome sequencing (RNA-seq) approaches. RNA-seq is a powerful technique for characterizing and quantifying the transcriptome and accelerates the development of bioinformatics software. In this review, we introduce routine RNA-seq workflow together with related software, focusing particularly on transcriptome reconstruction and expression quantification.

Genetic Characterization of Clinical Acanthamoeba Isolates from Japan using Nuclear and Mitochondrial Small Subunit Ribosomal RNA

  • Rahman, Md Moshiur;Yagita, Kengi;Kobayashi, Akira;Oikawa, Yosaburo;Hussein, Amjad I.A.;Matsumura, Takahiro;Tokoro, Masaharu
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.4
    • /
    • pp.401-412
    • /
    • 2013
  • Because of an increased number of Acanthamoeba keratitis (AK) along with associated disease burdens, medical professionals have become more aware of this pathogen in recent years. In this study, by analyzing both the nuclear 18S small subunit ribosomal RNA (18S rRNA) and mitochondrial 16S rRNA gene loci, 27 clinical Acanthamoeba strains that caused AK in Japan were classified into 3 genotypes, T3 (3 strains), T4 (23 strains), and T5 (one strain). Most haplotypes were identical to the reference haplotypes reported from all over the world, and thus no specificity of the haplotype distribution in Japan was found. The T4 sub-genotype analysis using the 16S rRNA gene locus also revealed a clear subconformation within the T4 cluster, and lead to the recognition of a new sub-genotype T4i, in addition to the previously reported sub-genotypes T4a-T4h. Furthermore, 9 out of 23 strains in the T4 genotype were identified to a specific haplotype (AF479533), which seems to be a causal haplotype of AK. While heterozygous nuclear haplotypes were observed from 2 strains, the mitochondrial haplotypes were homozygous as T4 genotype in the both strains, and suggested a possibility of nuclear hybridization (mating reproduction) between different strains in Acanthamoeba. The nuclear 18S rRNA gene and mitochondrial 16S rRNA gene loci of Acanthamoeba spp. possess different unique characteristics usable for the genotyping analyses, and those specific features could contribute to the establishment of molecular taxonomy for the species complex of Acanthamoeba.

RT-PCR Detection of dsRNA Mycoviruses Infecting Pleurotus ostreatus and Agaricus blazei Murrill

  • Kim, Yu-Jeong;Park, Sang-Ho;Yie, Se-Won;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.343-348
    • /
    • 2005
  • The partial nucleotide sequences of the genomic dsRNA mycoviruses infecting Pleurotus ostreatus (isolates ASI2596, ASI2597, and Bupyungbokhoe) and Agaricus blazei Murrill were determined and compared with those of the other dsRNA mycoviruses. Partial nucleotide sequences of the purified dsRNA from ASI2596 and ASI2597 revealed RNA-dependent RNA polymerase sequences that are closely related to Oyster mushroom isometric virus 2, while nucleotide sequences and the deduced amino acid sequence from dsRNA mycovirus infecting Agaricus blazei did not show any significant homology to the other dsRNA mycoviruses. Specific primers were designed for RT-PCR detection of these dsRNA viruses and were found to specifically detect each dsRNA virus. Northern blot analysis confirmed the homogeneity of RT-PCR products to each purified dsRNA. Altogether, our results suggest that these virus-specific primer sets can be employed for the specific detection of each dsRNA mycovirus in infected mushrooms.

UAP56- a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export

  • Shen, Hai-Hong
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.185-188
    • /
    • 2009
  • Transcripts contain introns that are usually removed from premessenger RNA (MRNA) in the process of pre-mRNA splicing. After splicing, the mature RNA is exported from the nucleus to the cytoplasm. The splicing and export processes are coupled. UAP56 protein, which is ubiquitously present in organisms from yeasts to humans, is a DExD/H-box family RNA helicase that is an essential splicing factor with various functions in the prespliceosome assembly and mature spliceosome assembly. Collective evidence indicates that UAP56 has an essential role in mRNA nuclear export. This mini-review summarizes recent evidence for the role of UAP56 in pre-mRNA splicing and nuclear export.

Identification of the Interaction between Insulin-like Growth Factor Binding Protein-4 (IGFBP-4) and Heterogeneous Nuclear Ribonucleoprotein L (hnRNP L) (IGF결합 단백질-4(IGFBP-4)와 이질 핵 리보핵산단백질 L (hnRNP L)의 상호결합의 식별)

  • Choi, Mieyoung
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1311-1316
    • /
    • 2013
  • Heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a major pre-mRNA binding protein and it is an abundant nuclear protein that shuttles between the nucleus and the cytoplasm. hnRNP L is known to be related to many cellular processes, including chromatin modification, pre-mRNA splicing, mRNA export of intronless genes, internal ribosomal entry site (IRES)-mediated translation, mRNA stability, and spermatogenesis. In order to identify the cellular proteins interacting with hnRNP L, this study performed a yeast two-hybrid screening, using a human liver cDNA library. The study identified insulin-like growth factor binding protein-4 (IGFBP-4) as a novel interaction partner of hnRNP L in the human liver. It then discovered, for the first time, that hnRNP L interacts specifically with IGFBP-4 in a yeast two-hybrid system. The authenticity of this two-hybrid interaction of hnRNP L and IGFBP-4 was confirmed by an in vitro pull-down assay.

The Relationship between Change of Lymphocyte Inositol Monophosphatase mRNA Level by Lithium and Clinical Course in Bipolar Affective Disorder (Lithium에 의한 양극성 기분장애환자의 임파구 Inositol Monophosphatase mRNA 양의 변화와 임상경과)

  • Kim, Seok Hyeon;Lee, Min Soo;Lee, Jang Han
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.1
    • /
    • pp.96-105
    • /
    • 2001
  • Objective : Lithium inhibits the action of inositol monophosphatase(IMPase) in phosphoinositide(PI) signal transduction system at therapeutically relevant concentration. The depletion of inositol by lithium itself cannot explain the lithium's therapeutic effect. However, attention has focused on the abnormality of PI signal transduction system as the pathophysiology of bipolar affective disorder(BPD). We investigated whether IMPase mRNA levels of lymphocytes would be different between BPD patients(n=16) and age, sex-matched normal controls(n=16). We also investigated the change of IMPase mRNA level by lithium during 4 weeks to probe the possibility that IMPase mRNA levels could predict the therapeutic response to lithium and clinical course. Method : Relative IMPase mRNA levels in lymphocyte were quantified by reverse transcriptase(RT)-PCR in sixteen drug-free BPD patients and sex, age-matched normal controls. The psychopathology of patients were measured using YMRS (Young Mania Rating Scale) and CGI(Clinical Global Impression). Results : There was no significant difference in IMPase mRNA levels between BPD patients and normal controls. And the IMPase mRNA levels were not significantly changed by 4 week treatment with lithium. However, the basal IMPase mRNA levels were negatively correlated with the changes of CGI after 4 weeks. Furthermore, the patients with relatively high basal IMPase mRNA levels showed much more improvement during 4 weeks. Conclusions : BPD patients and normal controls were not distinguished by lymphocyte IMPase mRNA level. Although we do not support the hypothesis that lymphocyte IMPase activity would be related with the pathogenesis of BPD and the action of lithium, these data raise the possibility that lymphocyte IMPase mRNA levels could function as a predictor of therapeutic response and clinical course of BPD.

  • PDF

Quantitative Differences in mRNA Expression of Toll-like Receptor (TLR)-2, -4, and -9 in Normal Equine Eyes and Eyes with Equine Recurrent Uveitis (말의 정상안과 재발성 포도막염이 있는 안구에서의 Toll-like Receptor-2, -4, -9 발현 비교)

  • Yi, Na-Young;Salmon, Jacklyn;Gilger, Brian
    • Journal of Veterinary Clinics
    • /
    • v.26 no.6
    • /
    • pp.520-523
    • /
    • 2009
  • The purporse of this study was to evaluate the quantitative differences in mRNA expression of TLR-2, -4, and -9 in normal equine eyes and eyes with equine recurrent uveitis (ERU). Normal equine eyes (n = 6) and eyes with naturally-occurring ERU (n = 6) were collected. Real time PCR assay was performed to compare mRNA expression of TLR-2, -4, and -9 between normal and ERU eyes. A significant up-regulation of TLR-2 and -9 mRNA in the ciliary body and TLR-2 mRNA in the iris was found in eyes with ERU compared to the mRNA levels in these same tissues of normal equine eyes. There were no remarkable differences observed in TLR-4 mRNA expression between normal eyes and eyes with ERU. The current data suggest the potential involvement of TLR-2 and -9 in the pathogenesis of ERU. However, further study is required to determine the role of TLRs in ERU.

Draft genome sequence of Pelagicola sp. DSW4-44 isolated from seawater (해수에서 분리된 Pelagicola sp. DSW4-44의 초안 유전체 서열분석)

  • Oh, Ji-Sung;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.283-285
    • /
    • 2019
  • The draft genome sequencing for Pelagicola sp. DSW4-44 (= KCTC 62762 = KCCM 43261), isolated from deep seawater of East Sea in Korea, was performed using Illumina HiSeq platform. As a result, the draft genome was comprised of a total length of approximately 4.85 Mbp with G + C content of 54.3%, and included a total of 4,566 protein-coding genes, 3 rRNA genes, 48 tRNA genes, 3 non-coding RNA genes, and 67 pseudo genes. In the draft genome, the strain DSW4-44 contained genes involved in the nitrogen metabolism of dissimilatory nitrate reduction to ammonium (DNRA) and denitrification, which were not found other strains in the genus Pelagicola.