• Title/Summary/Keyword: RNA transcription

Search Result 1,670, Processing Time 0.039 seconds

Antibiotic Spectrum and Mechanism of Centipedin (Centipede Scolopendra subspinipes multilans L. KOCH로부터 정제된 항균 물질 Centipedin의 항균 Spectrum 및 작용 Mechanism 연구)

  • Kim, Ki-Tae;Hong, Sa-Weon;Won, Ho-Shik;Kim, Hyo-Joon;Park, Kyung-Bae;Cho, Key-Seung
    • Korean Journal of Microbiology
    • /
    • v.34 no.1_2
    • /
    • pp.31-36
    • /
    • 1998
  • A broad spectrum of antibiotic action was studied with Centipedin purified from centipede Scolopendra subspinipes multilans L. Koch aganist gram-positive, gram-negative bacteria and fungi. The minimal inhibitory concentrations(MICs) were determined in liquid medium. The significant antibiotic activity was obtained aganist gram-negative Klebsiella pneumoniae ATCC 8308 responsible for causing infection at lung and intestine. The MIC value against Klebsiella pneumoniae ATCC 8308 was $2{\mu}g/ml$, and this Centipedin was active against Proteus vulgaris NRRL B-123. In addition, it has been shown that Centipedin blocks procaryotic RNA transcription and a little of DNA replication system in vitro. Centipedin did not exhibit any significant cytotoxicity against animal cells such as human blood leukemia (HL-60) and mouse B lymphocyte myeloma cell.

  • PDF

Investigation of functional roles of transcription termination factor-1 (TTF-I) in HIV-1 replication

  • Park, Seong-Hyun;Yu, Kyung-Lee;Jung, Yu-Mi;Lee, Seong-Deok;Kim, Min-Jeong;You, Ji-Chang
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.338-343
    • /
    • 2018
  • Transcription termination factor-1 (TTF-I) is an RNA polymerase 1-mediated transcription terminator and consisting of a C-terminal DNA-binding domain, central domain, and N-terminal regulatory domain. This protein binds to a so-called 'Sal box' composed of an 11-base pair motif. The interaction of TTF-I with the 'Sal box' is important for many cellular events, including efficient termination of RNA polymerase-1 activity involved in pre-rRNA synthesis and formation of a chromatin loop. To further understand the role of TTF-I in human immunodeficiency virus (HIV)-I virus production, we generated various TTF-I mutant forms. Through a series of studies of the over-expression of TTF-I and its derivatives along with co-transfection with either proviral DNA or HIV-I long terminal repeat (LTR)-driven reporter vectors, we determined that wild-type TTF-I downregulates HIV-I LTR activity and virus production, while the TTF-I Myb-like domain alone upregulated virus production, suggesting that wild-type TTF-I inhibits virus production and trans-activation of the LTR sequence; the Myb-like domain of TTF-I increased virus production and trans-activated LTR activity.

Identification of Egr1 Direct Target Genes in the Uterus by In Silico Analyses with Expression Profiles from mRNA Microarray Data

  • Seo, Bong-Jong;Son, Ji Won;Kim, Hye-Ryun;Hong, Seok-Ho;Song, Haengseok
    • Development and Reproduction
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Early growth response 1 (Egr1) is a zinc-finger transcription factor to direct second-wave gene expression leading to cell growth, differentiation and/or apoptosis. While it is well-known that Egr1 controls transcription of an array of targets in various cell types, downstream target gene(s) whose transcription is regulated by Egr1 in the uterus has not been identified yet. Thus, we have tried to identify a list of potential target genes of Egr1 in the uterus by performing multi-step in silico promoter analyses. Analyses of mRNA microarray data provided a cohort of genes (102 genes) which were differentially expressed (DEGs) in the uterus between Egr1(+/+) and Egr1(-/-) mice. In mice, the frequency of putative EGR1 binding sites (EBS) in the promoter of DEGs is significantly higher than that of randomly selected non-DEGs, although it is not correlated with expression levels of DEGs. Furthermore, EBS are considerably enriched within -500 bp of DEG's promoters. Comparative analyses for EBS of DEGs with the promoters of other species provided power to distinguish DEGs with higher probability as EGR1 direct target genes. Eleven EBS in the promoters of 9 genes among analyzed DEGs are conserved between various species including human. In conclusion, this study provides evidence that analyses of mRNA expression profiles followed by two-step in silico analyses could provide a list of putative Egr1 direct target genes in the uterus where any known direct target genes are yet reported for further functional studies.

Sperm chromatin and DNA integrity, methyltransferase mRNA levels, and global DNA methylation in oligoasthenoteratozoospermia

  • Rahiminia, Tahereh;Yazd, Ehsan Farashahi;Fesahat, Farzaneh;Moein, Mohammad Reza;Mirjalili, Ali Mohammad;Talebi, Ali Reza
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.45 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Objective: To investigate sperm chromatin/DNA integrity, global DNA methylation, and DNMT mRNA transcription in men with oligoasthenoteratozoospermia (OAT) compared with normozoospermic men. Methods: Semen samples from 32 OAT patients who comprised the case group and 32 normozoospermic men who comprised the control group were isolated and purified using a standard gradient isolation procedure according to World Health Organization criteria. DNMT1, DNMT3A, and DNMT3B transcripts were then compared between groups using real-time quantitative reverse-transcription polymerase chain reaction. Global DNA methylation in sperm was determined by an enzyme-linked immunosorbent assay. Protamine deficiency and the proportion of apoptotic spermatozoa were evaluated using chromomycin A3 (CMA3), aniline blue (AB), and toluidine blue (TB) staining, as well as the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The p-values < 0.05 were considered to indicate statistical significance. Results: Significantly higher proportions of AB+, TB+, CMA3+, and TUNEL+ spermatozoa, as well as DNMT3A and DNMT3B transcription, were found in the OAT group. Positive correlations were detected between sperm parameters, DNA/chromatin damage, and DNMT3A and DNMT3B transcripts. Global DNA methylation was significantly higher in the OAT patients and had a significant correlation with abnormal results of all sperm chromatin integrity tests, but was not associated with DNMT1, DNMT3A, or DNMT3B expression. Conclusion: Oligoasthenoteratozoospermic men showed abnormal sperm parameters, abnormal chromatin/DNA integrity, and a higher global DNA methylation rate, as well as overexpression of DNMT mRNA.

Role of RNA Polymerase II Carboxy Terminal Domain Phosphorylation in DNA Damage Response

  • Jeong Su-Jin;Kim Hye-Jin;Yang Yong-Jin;Seol Ja-Hwan;Jung Bo-Young;Han Jeong-Whan;Lee Hyang-Woo;Cho Eun-Jung
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.516-522
    • /
    • 2005
  • The phosphorylation of C-terminal domain (CTD) of Rpb1p, the largest subunit of RNA polymerase II plays an important role in transcription and the coupling of various cellular events to transcription. In this study, its role in DNA damage response is closely examined in Saccharomyces cerevisiae, focusing specifically on several transcription factors that mediate or respond to the phosphorylation of the CTD. CTDK-1, the pol II CTD kinase, FCP1, the CTD phosphatase, ESS1, the CTD phosphorylation dependent cis-trans isomerase, and RSP5, the phosphorylation dependent pol II ubiquitinating enzyme, were chosen for the study. We determined that the CTD phosphorylation of CTD, which occurred predominantly at serine 2 within a heptapeptide repeat, was enhanced in response to a variety of sources of DNA damage. This modification was shown to be mediated by CTDK-1. Although mutations in ESS1 or FCP1 caused cells to become quite sensitive to DNA damage, the characteristic pattern of CTD phosphorylation remained unaltered, thereby implying that ESS1 and FCP1 play roles downstream of CTD phosphorylation in response to DNA damage. Our data suggest that the location or extent of CTD phosphorylation might be altered in response to DNA damage, and that the modified CTD, ESS1, and FCP1 all contribute to cellular survival in such conditions.

Anti-obesity Effects of Black Soybean Doenjang in C57BL/6 Mice (고지방식이로 유도된 비만 마우스에서 검정콩 된장의 항비만 효과)

  • Kim, Jiyoung
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1486-1493
    • /
    • 2017
  • Doenjang is a traditional korean fermented soybean paste made from meju (fermented soybean), which are fermented by diverse microorganisms including Bacillus subtilis and molds such as Rizopus, Mucor, and Aspergillus species The purpose of this study was to investigate the antiobesity effect of the black soybean doenjang (Korean fermented soybean pastes) in C57BL/6 mice. The anti-obesity effect was determined by measuring the release of adiponectin, leptin and adipogenic transcription factors by using reverse transcription-polymerase chain reaction and western blot. Weight gain was significantly reduced in the mice fed high fat diets (HFD) plus black soybean doenjang (HBD) compared to HFD mice. The HBD were also effective in improving the lipid profile. They significantly decreased the levels of serum triglyceride and cholesterol. In addition, they had a significantly down regulated impact on antiobesity factors; leptin level and increased adiponectin level. Also, mRNA and protein expression of two adipogenic transcription factors, SREBP-1c and $PPAR-{\gamma}$, in high fat with black soybean fed mice were markedly down regulated. These results indicate that the black soybean doenjang potentiates an anti-obesity effect by modulating lipid metabolism, thereby inhibiting adipogenic transcriptional activation.

The Suppression Effects of Fat Mass and Obesity Associated Gene on the Hair Follicle-Derived Neural Crest Stem Cells Differentiating into Melanocyte by N6-Methyladenosine Modifying Microphthalmia-Associated Transcription Factor

  • Zhiwei Shang;Haixia Feng;Liye Xia
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.135-144
    • /
    • 2023
  • Background and Objectives: Melanocyte (MC), derived from neural crest stem cell (NCSC), are involved in the production of melanin. The mechanism by which NCSC differentiates to MC remains unclear. N6-methyladenosine (m6A) modification was applied to discuss the potential mechanism. Methods and Results: NCSCs were isolated from hair follicles of rats, and were obtained for differentiation. Cell viability, tyrosinase secretion and activity, and transcription factors were combined to evaluated the MC differentiation. RT-qPCR was applied to determine mRNA levels, and western blot were used for protein expression detection. Total m6A level was measured using methylated RNA immunoprecipitation (MeRIP) assay, and RNA immunoprecipitation was used to access the protein binding relationship. In current work, NCSCs were successfully differentiated into MCs. Fat mass and obesity associated gene (FTO) was aberrant downregulated in MCs, and elevated FTO suppressed the differentiation progress of NCSCs into MCs. Furthermore, microphthalmia-associated transcription factor (Mitf), a key gene involved in MC synthesis, was enriched by FTO in a m6A modification manner and degraded by FTO. Meanwhile, the suppression functions of FTO in the differentiation of NCSCs into MCs were reversed by elevated Mitf. Conclusions: In short, FTO suppressed the differentiating ability of hair follicle-derived NCSCs into MCs by m6A modifying Mitf.

Detection of Plant RNA Viruses by Hybridization Using In Vitro Transcribed RNA Probes (In Viro 전사 RNA Probe를 이용한 식물 바이러스병의 진단)

  • 최장경;이종희;함영일
    • Korean Journal Plant Pathology
    • /
    • v.11 no.4
    • /
    • pp.367-373
    • /
    • 1995
  • The cDNAs derived from the coat protein (CP) genes of six plant RNA viruses, tobacco mosaic virus-pepper strains (TMV-P) and -ordinary strain (TMV-OM), potato virus Y (PVY), turnip mosaic virus (TuMV), cucumber mosaic virus (CMV) and potato leafroll virus (PLRV), were subcloned into the transcription vector, pSPT18, containing SP6 and T7 promoters. The digoxigenin (DIG)-labeled RNA polymerase after linearlization of the cloned pSPTs with XbaI or SacI, and were tested for their sensitivities for the detection of the six viruses. In slot-blot hybridization, dilution end points for the detection of TMV-P and TMV-OM were 10-4, while those of PVY, TuMV and CMV were 10-3. PLRV was detected at the dilution of 10-2. When each RNA probe was applied for the detection of the viruses in the preparations from the leaf disks (8 mm in diameter, and 12 to 15 mg in weight) of infected natural host plants, TMV-P, TMV-OM and TuMV could be detected from one disk, while PVY from 1 or 2 disks. CMV was detected in the preparation from two disks, and PLRV from three disks. With DIG-labeled RNA probe, PVY was detected at 5 days after inoculation, but with ELISA the virus was detected at 8 days after inoculation to tobacco (Nicotiana tabacum cv. Xanthi nc) plants on which symptoms appeared at 9 days after inoculation. No difference was observed in cross reaction between the RNA probes for the detection of TMV-P and TMV-OM.

  • PDF

Optimization of Reference Genes for Normalization of the Quantitative Polymerase Chain Reaction in Tissue Samples of Gastric Cancer

  • Zhao, Lian-Mei;Zheng, Zhao-Xu;Zhao, Xiwa;Shi, Juan;Bi, Jian-Jun;Pei, Wei;Feng, Qiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5815-5818
    • /
    • 2014
  • For an exact comparison of mRNA transcription in different samples or tissues with real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), it is crucial to select a suitable internal reference gene. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and beta-actin (ACTB) have been frequently considered as house-keeping genes to normalize for changes in specific gene expression. However, it has been reported that these genes are unsuitable references in some cases, because their transcription is significantly variable under particular experimental conditions and among tissues. The present study was aimed to investigate which reference genes are most suitable for the study of gastric cancer tissues using qRT-PCR. 50 pairs of gastric cancer and corresponding peritumoral tissues were obtained from patients with gastric cancer. Absolute qRT-PCR was employed to detect the expression of GAPDH, ACTB, RPII and 18sRNA in the gastric cancer samples. Comparing gastric cancer with corresponding peritumoral tissues, GAPDH, ACTB and RPII were obviously upregulated 6.49, 5.0 and 3.68 fold, respectively. Yet 18sRNA had no obvious expression change in gastric cancer tissues and the corresponding peritumoral tissues. The expression of GAPDH, ${\beta}$-actin, RPII and 18sRNA showed no obvious changes in normal gastric epithelial cells compared with gastric cancer cell lines. The carcinoembryonic antigen (CEA), a widely used clinical tumor marker, was used as a validation gene. Only when 18sRNA was used as the normalizing gene was CEA obviously elevated in gastric cancer tissues compared with peritumoral tissues. Our data show that 18sRNA is stably expressed in gastric cancer samples and corresponding peritumoral tissues. These observations confirm that there is no universal reference gene and underline the importance of specific optimization of potential reference genes for any experimental condition.

Zeolite-Mediated Cation Exchange Enhances the Stability of mRNA during Cell-Free Protein Synthesis

  • Kim, You-Eil;Kim, Dong-Myung;Choi, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.258-261
    • /
    • 2006
  • The addition of zeolite particles enhances the stability of mRNA molecules in a cell-free protein synthesis system. When $20{\mu}g/{\mu}L$ of zeolite (Y5.4) is added to a reaction mixture of cell-free protein synthesis, a substantial increase in protein synthesis is observed. The stabilizing effect of zeolite is most dearly observed in an in vitro translation reaction directed by purified mRNA, as opposed to a coupled transcription and translation reaction. Upon the addition of zeolite in the in vitro translation reaction, the life span of the mRNA molecules is substantially extended, leading to an 80% increase in protein synthesis. The effect of zeolite upon the mRNA stability appears be strongly related to the cation exchange (potassium to sodium) reaction. Our results demonstrate the possibility of modifying this biological process using heterogeneous, non-biological substances in a cell-free protein synthesis system.