• Title/Summary/Keyword: RNA therapeutics

Search Result 289, Processing Time 0.022 seconds

Effects of Resveratrol and trans-3,5,4'-Trimethoxystilbene on Glutamate-Induced Cytotoxicity, Heme Oxygenase-1, and Sirtuin 1 in HT22 Neuronal Cells

  • Kim, Dae-Won;Kim, Young-Mi;Kang, Sung-Don;Han, Young-Min;Pae, Hyun-Ock
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.306-312
    • /
    • 2012
  • Resveratrol (trans-3,5,4'-trihydroxystilbene) has received considerable attention recently for the potential neuroprotective effects in neurodegenerative disorders where heme oxygenase-1 (HO-1) and sirtuin 1 (SIRT1) represent promising therapeutic targets. Resveratrol has been known to increase HO-1 expression and SIRT1 activity. In this study, the effects of resveratrol and trans-3,5,4'-trimethoxystilbene (TMS), a resveratrol derivative, on cytotoxicity caused by glutamate-induced oxidative stress, HO-1 expression, and SIRT1 activation have been investigated by using murine hippocampal HT22 cells, which have been widely used as an in vitro model for investigating glutamate-induced neurotoxicity. Resveratrol protected HT22 neuronal cells from glutamate-induced cytotoxicity and increased HO-1 expression as well as SIRT1 activity in a concentration-dependent manner. Cytoprotection afforded by resveratrol was partially reversed by the specific inhibition of HO-1 expression by HO-1 small interfering RNA and the nonspecific blockage of HO-1 activity by tin protoporphyrin IX, but not by SIRT1 inhibitors. Surprisingly, TMS, a resveratrol derivative with methoxyl groups in lieu of the hydroxyl groups, and trans-stilbene, a non-hydroxylated analog, failed to protect HT22 cells from glutamate-induced cytotoxicity and to increase HO-1 expression and SIRT1 activity. Taken together, our findings suggest that the cytoprotective effect of resveratrol was at least in part associated with HO-1 expression but not with SIRT1 activation and, importantly, that the presence of hydroxyl groups on the benzene rings of resveratrol appears to be necessary for cytoprotection against glutamate-induced oxidative stress, HO-1 expression, and SIRT1 activation in HT22 neuronal cells.

Inhibition of Nitric Oxide Production by Ethyl Digallates Isolated from Galla Rhois in RAW 264.7 Macrophages

  • Park, Pil-Hoon;Hur, Jin;Lee, Dong-Sung;Kim, Youn-Chul;Jeong, Gil-Saeng;Sohn, Dong-Hwan
    • Biomolecules & Therapeutics
    • /
    • 제19권4호
    • /
    • pp.419-424
    • /
    • 2011
  • Galla Rhois and its components are known to possess anti-infl ammatory properties. In the present study, we prepared equilibrium mixture of ethyl m-digallate and ethyl p-digallate isomers (EDG) from Galla Rhois and examined its effect on nitric oxide (NO) production in murine macrophage cell line. Treatment of RAW264.7 macrophages with EDG signifi cantly inhibited NO production and inducible nitric oxide synthase (iNOS) expression stimulated by LPS, as assessed by Western blot and quantitative RT-PCR analyses. We also demonstrated that EDG treatment led to an increase in heme oxygenase-1 (HO-1) mRNA and protein expression. EDG treatment also enhanced expression level of nuclear factor-erythroid 2-related factor 2 (Nrf2) in nucleus, which is critical for transcriptional induction of HO-1. Treatment with SnPP (tin protoporphyrin IX), a selective HO-1 inhibitor, reversed EDG-mediated inhibition of nitrite production, suggesting that HO-1 plays an important role in the suppression of NO production by EDG. Taken together, these results indicate that EDG isolated from Galla Rhois suppresses LPS-stimulated NO production in RAW 264.7 macrophages via HO-1 induction.

Hesperidin Induces Apoptosis by Inhibiting Sp1 and Its Regulatory Protein in MSTO-211H Cells

  • Lee, Kyung-Ae;Lee, Sang-Han;Lee, Yong-Jin;Baeg, Seung-Mi;Shim, Jung-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.273-279
    • /
    • 2012
  • Hesperidin, a flavanone present in citrus fruits, has been studied as potential therapeutic agents that have anti-tumor activity and apoptotic effects in several cancers, but there is no report about the apoptotic effect of hesperidin in human malignant pleural mesothelioma through the specificity protein 1 (Sp1) protein. We investigated whether hesperidin inhibited cell growth and regulated Sp1 target proteins by suppressing the levels of Sp1 protein in MSTO-211H cells. The $IC_{50}$ value of hesperidin was determined to be 152.3 ${\mu}M$ in MSTO-211H cells for 48 h. Our results suggested that hesperidin (0-160 ${\mu}M$) decreased cell viability, and induced apoptotic cell death. Hesperidin increased Sub-$G_1$ population in MSTO-211H cells. Hesperidin significantly suppressed mRNA/protein level of Sp1 and modulated the expression level of the Sp1 regulatory protein such as p27, p21, cyclin D1, Mcl-1, and survivin in mesothelioma cells. Also, hesperidin induced apoptotic signaling including: cleavages of Bid, caspase-3, and PARP, upregulation of Bax, and down-regulation of Bcl-$_{xl}$ in mesothelioma cells. These results show that hesperidin suppressed mesothelioma cell growth through inhibition of Sp1. In this study, we demonstrated that Sp1 acts as a novel molecular target of hesperidin in human malignant pleural mesothelioma.

Induction of Resistance to BRAF Inhibitor Is Associated with the Inability of Spry2 to Inhibit BRAF-V600E Activity in BRAF Mutant Cells

  • Ahn, Jun-Ho;Han, Byeal-I;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • 제23권4호
    • /
    • pp.320-326
    • /
    • 2015
  • The clinical benefits of oncogenic BRAF inhibitor therapies are limited by the emergence of drug resistance. In this study, we investigated the role of a negative regulator of the MAPK pathway, Spry2, in acquired resistance using BRAF inhibitor-resistant derivatives of the BRAF-V600E melanoma (A375P/Mdr). Real-time RT-PCR analysis indicated that the expression of Spry2 was higher in A375P cells harboring the BRAF V600E mutation compared with wild-type BRAF-bearing cells (SK-MEL-2) that are resistant to BRAF inhibitors. This result suggests the ability of BRAF V600E to evade feedback suppression in cell lines with BRAF V600E mutations despite high Spry2 expression. Most interestingly, Spry2 exhibited strongly reduced expression in A375P/Mdr cells with acquired resistance to BRAF inhibitors. Furthermore, the overexpression of Spry2 partially restored sensitivity to the BRAF inhibitor PLX4720 in two BRAF inhibitor-resistant cells, indicating a positive role for Spry2 in the growth inhibition induced by BRAF inhibitors. On the other hand, long-term treatment with PLX4720 induced pERK reactivation following BRAF inhibition in A375P cells, indicating that negative feedback including Spry2 may be bypassed in BRAF mutant melanoma cells. In addition, the siRNA-mediated knockdown of Raf-1 attenuated the rebound activation of ERK stimulated by PLX4720 in A375P cells, strongly suggesting the positive role of Raf-1 kinase in ERK activation in response to BRAF inhibition. Taken together, these data suggest that RAF signaling may be released from negative feedback inhibition through interacting with Spry2, leading to ERK rebound and, consequently, the induction of acquired resistance to BRAF inhibitors.

Characterization of Tunicamycin as Anti-obesity Agent

  • Song, Ha-Suk;Kim, Hye-Min;Jung, Sook-Yung;Lee, Dong-Hee
    • Biomolecules & Therapeutics
    • /
    • 제17권2호
    • /
    • pp.162-167
    • /
    • 2009
  • Adipocytes undergo adipocyte stress in the excessive presence of lipid. Adipocyte stress accompanies the typical signs of endoplasmic reticulum (ER) stress: unfolded protein response and overexpression of molecular chaperones. Apoptotic induction in adipocytes is known as a good strategy for treating obesity. The drug "tunicamycin" was tested for its therapeutic potential in inducing apoptosis on differentiating adipocytes of 3T3-L1. When the 3T3-L1 cells, stimulated for adipogenesis, were treated with tunicamycin, they showed typical ER stress symptoms. Despite progression in ER stress, however, the differentiated 3T3-L1 hardly proceeded to apoptosis based on the CHOP protein expression and FACS analysis. This is very different from C2C12, the myogenic counterpart of 3T3-L1, which showed significant apoptosis along with ER stress. This study also characterizes a potential mechanism whereby adipocyte may avoid apoptosis to sustain the pathological state of obesity. The level of GRP94 expression significantly upholds in 3T3-L1 under tunicamycin treatment compared to preadipocytes and C2C-12. When GRP94 expression was inhibited by siRNA, 3T3-L1 showed a higher level of CHOP expression compared to C2C12 cells. In conclusion, adipocytes exert an anti-apoptotic mechanism under ER stress caused by tunicamycin; thus, apoptotic induction in adipocyte is not a viable anti-obesity option. The unusual level of GRP94 may serve as a key role whereby adipocytes reach to the obesity level circumventing the apoptosis.

Establishment of Immortalized Primary Human Foreskin Keratinocytes and Their Application to Toxicity Assessment and Three Dimensional Skin Culture Construction

  • Choi, Moonju;Park, Minkyung;Lee, Suhyon;Lee, Jeong Woo;Cho, Min Chul;Noh, Minsoo;Lee, Choongho
    • Biomolecules & Therapeutics
    • /
    • 제25권3호
    • /
    • pp.296-307
    • /
    • 2017
  • In spite of frequent usage of primary human foreskin keratinocytes (HFKs) in the study of skin biology, senescence-induced block-age of in vitro proliferation has been a big hurdle for their effective utilization. In order to overcome this passage limitation, we first isolated ten HFK lines from circumcision patients and successfully immortalized four of them via a retroviral transduction of high-risk human papillomavirus (HPV) E6 and E7 oncogenes. We confirmed expression of a keratinocyte marker protein, keratin 14 and two viral oncoproteins in these immortalized HFKs. We also observed their robust responsiveness to various exogenous stimuli, which was evidenced by increased mRNA expression of epithelial differentiation markers and pro-inflammatory genes in response to three reactive chemicals. In addition, their applicability to cytotoxicity assessment turned out to be comparable to that of HaCaT cells. Finally, we confirmed their differentiation capacity by construction of well-stratified three dimensional skin cultures. These newly established immortalized HFKs will be valuable tools not only for generation of in vitro skin disease models but also for prediction of potential toxicities of various cosmetic chemicals.

Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice

  • Jeong, Haengdueng;Lim, Kyung-Min;Goldenring, James R.;Nam, Ki Taek
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.553-561
    • /
    • 2019
  • Rab25, a member of the Rab11 small GTPase family, is central to achieving cellular polarity in epithelial tissues. Rab25 is highly expressed in epithelial cells of various tissues including breast, vagina, cervix, the gastrointestinal tract, and skin. Rab25 plays key roles in tumorigenesis, mainly by regulating epithelial differentiation and proliferation. However, its role in skin physiology is relatively unknown. In this study, we demonstrated that Rab25 knock-out (KO) mice show a skin barrier dysfunction with high trans-epidermal water loss and low cutaneous hydration. To examine this observation, we investigated the histology and epidermal differentiation markers of the skin in Rab25 KO mice. Rab25 KO increased cell proliferation at the basal layer of epidermis, whereas the supra-basal layer remained unaffected. Ceramide, which is a critical lipid component for skin barrier function, was not altered by Rab25 KO in its distribution or amount, as determined by immunohistochemistry. Notably, levels of epidermal differentiation markers, including loricrin, involucrin, and keratins (5, 14, 1, and 10) increased prominently in Rab25 KO mice. In line with this, depletion of Rab25 with single hairpin RNA increased the expression of differentiation markers in a human keratinocyte cell line, HaCaT. Transcriptomic analysis of the skin revealed increased expression of genes associated with skin development, epidermal development, and keratinocyte differentiation in Rab25 KO mice. Collectively, these results suggested that Rab25 is involved in the regulation of epidermal differentiation and proliferation.

Particulate Matter-Induced Aryl Hydrocarbon Receptor Regulates Autophagy in Keratinocytes

  • Jang, Hye sung;Lee, Ji eun;Myung, Cheol hwan;Park, Jong il;Jo, Chan song;Hwang, Jae Sung
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.570-576
    • /
    • 2019
  • Particulate matter (PM), which refers to the mixture of particles present in the air, can have harmful effects. Damage to cells by PM, including disruption of organelles and proteins, can trigger autophagy, and the relationship between autophagy and PM has been well studied. However, the cellular regulators of PM-induced autophagy have not been well characterized, especially in keratinocytes. The Aryl Hydrocarbon Receptor (AhR) is expressed in the epidermis and is activated by PM. In this study, we investigated the role of the AhR in PM-induced autophagy in HaCaT cells. Our results showed that PM led to AhR activation in keratinocytes. Activation of the AhR-target gene CYP1A1 by PM was reduced by co-treatment with ${\alpha}$-naphthoflavone (${\alpha}-NF$), an AhR inhibitor. We also evaluated activation of the autophagy pathway in PM-treated keratinocytes. In HaCaT cells, treatment with PM treatment led to the induction of microtubules-associated proteins light chain 3 (LC3) and p62/SQSTM1, which are essential components of the autophagy pathway. To study the role of the AhR in mediating PM-induced autophagy, we treated cells with ${\alpha}-NF$ or used an siRNA against AhR. Expression of LC3-II induced by PM was decreased in a dose dependent manner by ${\alpha}-NF$. Furthermore, knockdown of AhR with siAhR diminished PM-induced expression of LC3-II and p62. Together, these results suggest that inhibition of the AhR decreases PM-induced autophagy. We confirmed these results using the autophagy-inhibitors BAF and 3-MA. Taken together, our results indicate that exposure to PM induces autophagy via the AhR in HaCaT keratinocytes.

G0/G1 Switch 2 Induces Cell Survival and Metastasis through Integrin-Mediated Signal Transduction in Human Invasive Breast Cancer Cells

  • Cho, Eunah;Kwon, Yeo-Jung;Ye, Dong-Jin;Baek, Hyoung-Seok;Kwon, Tae-Uk;Choi, Hyung-Kyoon;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.591-602
    • /
    • 2019
  • Human breast cancer cell line, MDA-MB-231, is highly invasive and aggressive, compared to less invasive cell line, MCF-7. To explore the genes that might influence the malignancy of MDA-MB-231, DNA microarray analysis was performed. The results showed that G0/G1 switch 2 (G0S2) was one of the most highly expressed genes among the genes upregulated in MDA-MB-231. Although G0S2 acts as a direct inhibitor of adipose triglyceride lipase, action of G0S2 in cancer progression is not yet understood. To investigate whether G0S2 affects invasiveness of MDA-MB-231 cells, G0S2 expression was inhibited using siRNA, which led to decreased cell proliferation, migration, and invasion of MDA-MB-231 cells. Consequently, G0S2 inhibition inactivated integrin-regulated FAK-Src signaling, which promoted Hippo signaling and inactivated ERK1/2 signaling. In addition, G0S2 downregulation decreased ${\beta}$-catenin expression, while E-cadherin expression was increased. It was demonstrated for the first time that G0S2 mediates the Hippo pathway and induces epithelial to mesenchymal transition (EMT). Taken together, our results suggest that G0S2 is a major factor contributing to cell survival and metastasis of MDA-MB-231 cells.

Involvement of a Novel Organic Cation Transporter in Paeonol Transport Across the Blood-Brain Barrier

  • Gyawali, Asmita;Krol, Sokhoeurn;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.290-301
    • /
    • 2019
  • Paeonol has neuroprotective function, which could be useful for improving central nervous system disorder. The purpose of this study was to characterize the functional mechanism involved in brain transport of paeonol through blood-brain barrier (BBB). Brain transport of paeonol was characterized by internal carotid artery perfusion (ICAP), carotid artery single injection technique (brain uptake index, BUI) and intravenous (IV) injection technique in vivo. The transport mechanism of paeonol was examined using conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) as an in vitro model of BBB. Brain volume of distribution (VD) of [$^3H$]paeonol in rat brain was about 6-fold higher than that of [$^{14}C$]sucrose, the vascular space marker of BBB. The uptake of [$^3H$]paeonol was concentration-dependent. Brain volume of distribution of paeonol and BUI as in vivo and inhibition of analog as in vitro studies presented significant reduction effect in the presence of unlabeled lipophilic compounds such as paeonol, imperatorin, diphenhydramine, pyrilamine, tramadol and ALC during the uptake of [$^3H$]paeonol. In addition, the uptake significantly decreased and increased at the acidic and alkaline pH in both extracellular and intracellular study, respectively. In the presence of metabolic inhibitor, the uptake reduced significantly but not affected by sodium free or membrane potential disruption. Similarly, paeonol uptake was not affected on OCTN2 or rPMAT siRNA transfection BBB cells. Interestingly. Paeonol is actively transported from the blood to brain across the BBB by a carrier mediated transporter system.