• Title/Summary/Keyword: RNA therapeutics

Search Result 289, Processing Time 0.023 seconds

Anti-Inflammatory and PPAR Transactivational Effects of Oleanane-Type Triterpenoid Saponins from the Roots of Pulsatilla koreana

  • Li, Wei;Yan, Xi Tao;Sun, Ya Nan;Ngan, Thi Thanh;Shim, Sang Hee;Kim, Young Ho
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.334-340
    • /
    • 2014
  • In this study, 23 oleanane-type triterpenoid saponins were isolated from a methanol extract of the roots of Pulsatilla koreana. The NF-${\kappa}B$ inhibitory activity of the isolated compounds was measured in $TNF{\alpha}$-treated HepG2 cells using a luciferase reporter system. Compounds 19-23 inhibited $TNF{\alpha}$-stimulated NF-${\kappa}B$ activation in a dose-dependent manner, with $IC_{50}$ values ranging from $0.75-8.30{\mu}M$. Compounds 19 and 20 also inhibited the $TNF{\alpha}$-induced expression of iNOS and ICAM-1 mRNA. Moreover, effect of the isolated compounds on PPARs transcriptional activity was assessed. Compounds 7-11 and 19-23 activated PPARs the transcriptional activity significantly in a dose-dependent manner, with $EC_{50}$ values ranging from $0.9-10.8{\mu}M$. These results suggest the presence of potent anti-inflammatory components in P. koreana, and will facilitate the development of novel anti-inflammatory agents.

Synthesis and Biological Evaluation of Novel IM3829 (4-(2-Cyclohexylethoxy)aniline) Derivatives as Potent Radiosensitizers

  • Ahn, Jiyeon;Nam, Ky-Youb;Lee, Sae-Lo-Oom;Ryu, Hwani;Choi, Hyun Kyung;Song, Jie-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3623-3626
    • /
    • 2014
  • Nuclear factor-erythroid 2-related factor 2 (Nrf2) regulates the expression of over 200 genes of antioxidant and phase II drug-metabolizing enzymes, and is highly expressed in non-small cell lung cancer (NSCLC). Nine derivatives of 4-(2-cyclohexylethoxy)aniline were designed. Our previous study demonstrated that IM3829 increases radiosensitivity of several lung cancer cells in vitro and in vivo. Here, biological effects of IM3829 derivatives (2a-2i) were evaluated. Compound 2g derivative effectively inhibits mRNA and protein expression of Nrf2 and HO-1. In addition, we observed over two fold enhancement in IR-induced cell death, from $2.90{\pm}0.22$ to $6.02{\pm}0.87$, in H1299 cancer cell-line. Among the nine derivatives, compound 2g derivative exhibited the highest enhancement of radiosensitizing effect via inhibition of Nrf2 activity.

Polyadenylation-Dependent Translational Control of New Protein Synthesis at Activated Synapse

  • Shin Chan-Young;Yang Sung-Il;Kim Kyun-Hwan;Ko Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.14 no.2
    • /
    • pp.75-82
    • /
    • 2006
  • Synaptic plasticity, which is a long lasting change in synaptic efficacy, underlies many neural processes like learning and memory. It has long been acknowledged that new protein synthesis is essential for both the expression of synaptic plasticity and memory formation and storage. Most of the research interests in this field have focused on the events regulating transcriptional activation of gene expression from the cell body and nucleus. Considering extremely differentiated structural feature of a neuron in CNS, a neuron should meet a formidable task to overcome spatial and temporal restraints to deliver newly synthesized proteins to specific activated synapses among thousands of others, which are sometimes several millimeters away from the cell body. Recent advances in synaptic neurobiology has found that almost all the machinery required for the new protein translation are localized inside or at least in the vicinity of postsynaptic compartments. These findings led to the hypothesis that dormant mRNAs are translationally activated locally at the activated synapse, which may enable rapid and delicate control of new protein synthesis at activated synapses. In this review, we will describe the mechanism of local translational control at activated synapses focusing on the role of cytoplasmic polyadenylation of dormant mRNAs.

Identification of P-Glycoprotein and Transport Mechanism of Paclitaxel in Syncytiotrophoblast Cells

  • Lee, Na-Young;Lee, Ha-Eun;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.68-72
    • /
    • 2014
  • When chemotherapy is administered during pregnancy, it is important to consider the fetus chemotherapy exposure, because it may lead to fetal consequences. Paclitaxel has become widely used in the metastatic and adjuvant settings for woman with cancer including breast and ovarian cancer. Therefore, we attempted to clarify the transport mechanisms of paclitaxel through blood-placenta barrier using rat conditionally immortalized syncytiotrophoblast cell lines (TR-TBTs). The uptake of paclitaxel was time- and temperature-dependent. Paclitaxel was eliminated about 50% from the cells within 30 min. The uptake of paclitaxel was saturable with $K_m$ of $168{\mu}M$ and $371{\mu}M$ in TR-TBT 18d-1 and TR-TBT 18d-2, respectively. [$^3H$]Paclitaxel uptake was markedly inhibited by cyclosporine and verapamil, well-known substrates of P-glycoprotein (P-gp) transporter. However, several MRP substrates and organic anions had no effect on [$^3H$]paclitaxel uptake in TR-TBT cells. These results suggest that P-gp may be involved in paclitaxel transport at the placenta. TR-TBT cells expressed mRNA of P-gp. These findings are important for therapy of breast and ovarian cancer of pregnant women, and should be useful data in elucidating teratogenicity of paclitaxel during pregnancy.

Tamoxifen Suppresses Clusterin Level through Akt Inactivation and Proteasome Degradation in Human Prostate Cancer Cells

  • Shim, Jae-Ho;Choi, Chang-Su;Lee, Eun-Chang;Kim, Mie-Young;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • Clusterin is a heterodimeric sulfated glycoprotein and plays a role in many different types of cancer as a cell survival factor and helps cancerous cells to evade stress-induced apoptosis. To investigate whether the regulation of clusterin expression is involved in the mechanism of anticancer agent, we studied the effect of tamoxifen on clusterin expression in human prostate cancer PC-3 cells. Treatment of PC-3 cells with tamoxifen reduced cellular proliferation. Western blot analyses showed that treatment with tamoxifen suppressed clusterin expression in a concentration-dependent manner. Transfection with clusterin siRNA plasmid showed that clusterin is required for PC-3 cell survival. We found that tamoxifen resulted in a rapid decrease in the phosphorylation of Akt on Ser473 leading to prevent kinase activity. Expression of myristoylated Akt prevented tamoxifen-mediated clusterin downregulation. Interestingly, MG132, a wellknown proteasome inhibitor also recovered clusterin expression suppressed by tamoxifen. These data indicate that clusterin expression may be regulated by activation of Akt and ubiquitin-proteasome pathway plays an important role in tamoxifen-mediated clusterin suppression.

Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases

  • Park, Myung Hee;Igarashi, Kazuei
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke.

Bacterial Lipopolysaccharides Induce Steroid Sulfatase Expression and Cell Migration through IL-6 Pathway in Human Prostate Cancer Cells

  • Im, Hee-Jung;Park, Na-Hee;Kwon, Yeo-Jung;Shin, Sangyun;Kim, Donghak;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.556-561
    • /
    • 2012
  • Steroid sulfatase (STS) is responsible for the conversion of estrone sulfate to estrone that can stimulate growth in endocrine-dependent tumors such as prostate cancer. Although STS is considered as a therapeutic target for the estrogen-dependent diseases, cellular function of STS are still not clear. Previously, we found that tumor necrosis factor (TNF)-${\alpha}$ significantly enhances steroid sulfatase expression in PC-3 human prostate cancer cells through PI3K/Akt-dependent pathways. Here, we studied whether bacterial lipopolysaccharides (LPS) which are known to induce TNF-${\alpha}$ may increase STS expression. Treatment with LPS in PC-3 cells induced STS mRNA and protein in concentration- and time-dependent manners. Using luciferase reporter assay, we found that LPS enhanced STS promoter activity. Moreover, STS expression induced by LPS increased PC-3 tumor cell migration determined by wound healing assay. We investigated that LPS induced IL-6 expression and IL-6 increased STS expression. Taken together, these data strongly suggest that LPS induces STS expression through IL-6 pathway in human prostate cancer cells.

Diphlorethohydroxycarmalol, Isolated from Ishige okamurae, Increases Prostaglandin E2 through the Expression of Cyclooxygenase-1 and -2 in HaCaT Human Keratinocytes

  • Kang, Gyeoung-Jin;Han, Sang-Chul;Koh, Young-Sang;Kang, Hee-Kyoung;Jeon, You-Jin;Yoo, Eun-Sook
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.520-525
    • /
    • 2012
  • Prostaglandin (PG) $E_2$, the most abundant prostaglandin in the human body, is synthesized from arachidonic acid via the actions of cyclooxygenase (COX) enzymes. $PGE_2$ exerts homeostatic, cytoprotective, inflammatory, and in some cases anti-inflammatory effects. Also, it has been reported that $PGE_2$ is involved in hair growth. Diphlorethohydroxycarmalol (DPHC) is a phlorotannin compound isolated from the brown algae Ishige okamurae, with various biological activities in vitro and in vivo. In this study, the biological effect and mechanism of action of DPHC on prostaglandin synthesis in HaCaT human keratinocytes was examined. The results showed that, in these cells, DPHC significantly and dose-dependently induced $PGE_2$ synthesis by increasing the protein and mRNA levels of COX-1 and COX-2. Interestingly, DPHC-induced COX-1 expression preceded that of COX-2. Also, while both rofecoxib and indomethacin inhibited $PGE_2$ production, the latter was seems to be the more potent. From above results, we can expect that DPHC has some beneficial effects via increasing of $PGE_2$ production.

Fisetin Suppresses Macrophage-Mediated Inflammatory Responses by Blockade of Src and Syk

  • Kim, Jun Ho;Kim, Mi-Yeon;Kim, Jong-Hoon;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.414-420
    • /
    • 2015
  • Flavonoids, such as fisetin (3,7,3',4'-tetrahydroxyflavone), are plant secondary metabolites. It has been reported that fisetin is able to perform numerous pharmacological roles including anti-inflammatory, anti-microbial, and anti-cancer activities; however, the exact anti-inflammatory mechanism of fisetin is not understood. In this study, the pharmacological action modes of fisetin in lipopolysaccharide (LPS)-stimulated macrophage-like cells were elucidated by using immunoblotting analysis, kinase assays, and an overexpression strategy. Fisetin diminished the release of nitric oxide (NO) and reduced the mRNA levels of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-${\alpha}$, and cyclooxygenase (COX)-2 in LPS-stimulated RAW264.7 cells without displaying cytotoxicity. This compound also blocked the nuclear translocation of p65/nuclear factor (NF)-${\kappa}B$. In agreement, the upstream phosphorylation events for NF-${\kappa}B$ activation, composed of Src, Syk, and I${\kappa}B{\alpha}$, were also reduced by fisetin. The phospho-Src level, triggered by overexpression of wild-type Src, was also inhibited by fisetin. Therefore, these results strongly suggest that fisetin can be considered a bioactive immunomodulatory compound with anti-inflammatory properties through suppression of Src and Syk activities.

Effect of Glycyrrhizae Radix on the Expression of UDP-Glucuronosyltransferase-1A1 (UGT1A1) in Rat Liver

  • Moon, A-Ree;Lee, Song-Deuk
    • Biomolecules & Therapeutics
    • /
    • v.4 no.3
    • /
    • pp.280-284
    • /
    • 1996
  • Licorice has been widely used in combination with other herbs or synthetic drugs for various disorders. In an effort to study the effect of licorice roots (Glycyrrhizae Radix, GR) and glycyrrhizin on the hepatic glucuronidation, we have previously found that the pretreatment of GR or glycyrrhizin for 6 days resulted in a marked increase in the enzymatic activity of 3-methylcholanthrene (3-MC)-inducible hepatic UDP-glucuronosyltransferase (UGT) isozyme that has high affinity toward phenolic substrates (p-nitrophenol form, UGTIA) in Sprague-Dawley rats. As an approach to elucidate the mechanism for the enzyme activation by licorice in rat liver, we examined the levels of hepatocellular mRNAs for UGTIA upon the treatment of GR or glycyrrhizin. The hepatic mRNAs were extracted from Sprague-Dawley rats and Wistar rats after the treatment of the methanol extract of GR (1 g/kg, p.o.), glycyrrhizin (23 mg/kg, p.o.) for 6 days, or 3-MC (40 mg/kg, i.p.) for 3 days. Using the UGT1A1 CDNA as a probe, we found that the mRNAs for the enzyme were induced by 3-MC treatment while those were influenced neither by GR nor by glycyrrhizin in both strains of rats. These results indicate that the activation of rat liver UGTI A by licorice and glycyrrhizin was not due to the induction of mRNAs for the enzyme.

  • PDF