• 제목/요약/키워드: RNA therapeutics

검색결과 289건 처리시간 0.03초

The complex role of extracellular vesicles in HIV infection

  • Jung-Hyun Lee
    • BMB Reports
    • /
    • 제56권6호
    • /
    • pp.335-340
    • /
    • 2023
  • During normal physiological and abnormal pathophysiological conditions, all cells release membrane vesicles, termed extracellular vesicles (EVs). Growing evidence has revealed that EVs act as important messengers in intercellular communication. EVs play emerging roles in cellular responses and the modulation of immune responses during virus infection. EVs contribute to triggering antiviral responses to restrict virus infection and replication. Conversely, the role of EVs in the facilitation of virus spread and pathogenesis has been widely documented. Depending on the cell of origin, EVs carry effector functions from one cell to the other by horizontal transfer of their bioactive cargoes, including DNA, RNA, proteins, lipids, and metabolites. The diverse constituents of EVs can reflect the altered states of cells or tissues during virus infection, thereby offering a diagnostic readout. The exchanges of cellular and/or viral components by EVs can inform the therapeutic potential of EVs for infectious diseases. This review discusses recent advances of EVs to explore the complex roles of EVs during virus infection and their therapeutic potential, focusing on HIV-1.

Long arm octopus (Octopus minor) extract prevents eye injury caused by particulate matter exposure in zebrafish (Danio rerio) embryos

  • Thilini Ranasinghe;Seon-Heui Cha
    • Fisheries and Aquatic Sciences
    • /
    • 제27권2호
    • /
    • pp.111-121
    • /
    • 2024
  • Particulate matter (PM) is a mixture of microscopic solid inhalable particles including airborne liquid droplets, and it is implicated with several diseases. The eye does not have a protective barrier among the human organs, consequently it get directly exposed to environmental substances such as PM. The scarcity of treatments for damage to the eyesight and the vision and eye structure being closely related to the structure and function of the central nervous system highlights the cruciality of novel therapeutics. In this study was conducted using in vivo zebrafish vertebrate model which is a useful model due to the conserved genes between human. We found that protective effect of Octopus minor extract against particulate matter-induced adverse effects on eye development in zebrafish (Danio rerio) embryos by regulating antioxidant and anti-inflammatory mRNA expression.

Chikungunya Virus nsP2 Impairs MDA5/RIG-I-Mediated Induction of NF-κB Promoter Activation: A Potential Target for Virus-Specific Therapeutics

  • Bae, Sojung;Lee, Jeong Yoon;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권12호
    • /
    • pp.1801-1809
    • /
    • 2020
  • Chikungunya virus (CHIKV) was first identified in 1952 as a causative agent of outbreaks. CHIKV is transmitted by two mosquito species, Aedes aegypti and A. albopictus. Symptoms after CHIKV infection in human are typically fever and joint pain, but can also include headache, muscle pain, joint swelling, polyarthralgia, and rash. CHIKV is an enveloped single-stranded, positive-sense RNA virus with a diameter of approximately 70 nm. The pathogenesis of CHIKV infection and the mechanism by which the virus evades the innate immune system remain poorly understood. Moreover, little is known about the roles of CHIKV-encoded genes in the viral evasion of host immune responses, especially type I interferon (IFN) responses. Therefore, in the present study, we screened CHIKV-encoded genes for their regulatory effect on the activation of nuclear factor kappa B (NF-κB), a critical transcription factor for the optimal activation of IFN-β. Among others, non-structural protein 2 (nsP2) strongly inhibited melanoma differentiation-associated protein 5 (MDA5)-mediated induction of the NF-κB pathway in a dose-dependent manner. Elucidation of the detailed mechanisms of nsP2-mediated inhibition of the MDA5/RIG-I signaling pathway is anticipated to contribute to the development of virus-specific therapeutics against CHIKV infection.

폐암 세포주에서 FHIT 유전자 이입에 의한 Apoptosis의 기전 (Mechanism of FHIT-Induced Apoptosis in Lung Cancer Cell Lines)

  • 유정선;김철현
    • Tuberculosis and Respiratory Diseases
    • /
    • 제56권5호
    • /
    • pp.450-464
    • /
    • 2004
  • 연구배경 : FHIT 유전자의 homozygous deletion과 이와 관련된 mRNA 발현 이상, 단백질의 발현 결손은 폐암에서 매우 높은 빈도로 관찰되고 있다. 일부 연구에 의하면 FHIT 유전자를 폐암 세포 내에 이입시켰을 때 apoptosis가 유발되었고, 세포 주기의 이상 소견이 관찰되었으며, 종양형성 능력이 억제됨이 관찰되었다. 하지만 아직까지 FHIT 단백질의 기능에 대한 지식은 미진한 상태이다. 본 연구에서는 FHIT 유전자를 폐암 세포에 이입시켰을 때 유발되는 apoptosis의 기전을 규명하고자 하였다. 방 법 : FHIT 유전자가 결손된 NCI-H358 세포주에 FHIT 유전자를 stable transfection 시킨 후, cisplatin 혹은 paclitaxel을 가하고 apoptosis가 항진되어 나타나는가를 DAPI staining과 flow cytometry로 관찰해 보았다. 또한 이 과정에서 나타나는 caspase system의 변화와 Bcl-2 family의 변화를 Western blotting으로 조사해 보았다. 결 과 : FHIT를 발현시킨 세포에서는 cisplatin 혹은 paclitaxel을 투여하였을 때 유의하게 생존율이 감소하였으며, 이는 apoptosis 증가에 의한 것으로 확인 되었다. 이 과정에서 FHIT가 발현된 세포는 caspase-3, caspase-7의 활성화가 유의하게 증가되었으며, Bcl-2와 Bcl-xL 발현은 유의하게 감소하고 Bax와 Bad 발현은 유의하게 증가하였다. 결 론 : FHIT가 발현된 폐암 세포에 항암제를 투여하였을 때 유의하게 증가한 apoptosis는 caspase system과 Bcl-2 family의 활성화와 관련되어 있다.

백서 혀에서의 4-nitroquinoline 1-oxide 유도 발암과정에서 Bcl-2 계 유전자의 발현 (Expression of Bcl-2 Family in 4-Nitroquinoline 1-Oxide-Induced Tongue Carcinogenesis of the Rat)

  • 최재욱;정성수;이금숙;김병국;김재형;국은별;장미선;고미경;정권;최홍란;김옥준
    • Journal of Oral Medicine and Pain
    • /
    • 제30권3호
    • /
    • pp.301-317
    • /
    • 2005
  • 전 세계적으로 구강암의 빈도는 점점 증가 추세이며, 특히 한국인의 있어 혀(tongue)는 구강암이 가장 호발하는 장소이다. 구강암은 발암 단계에서부터 과증식 병소(hyperplastic lesion), 이형성(dysplasia) 및 상피내암(carcinoma in situ) 을 거쳐 악성 암종으로 발전하는 다단계 발암과정을 보이며, 분자 생물학적 변이가 구강암을 진행시킴이 널리 알려져 있다. 또한, 구강암은 일반적으로 암세포의 증식 및 고사(apoptosis)의 억제가 중요한 역할을 하고 있다 알려져 있다. 그리고, Bcl-2 family 는 세포 고사에 주요한 역할을 하고 있음이 알려져 있다. 그러나, 이들과 관련한 구강암 발생과정의 변화에 대해서는 널리 연구된 바가 없다. 본 연구는 백서에서 발암 물질인 4-NQO로 구강암을 유도시키고, 구강암 발생 다단계별로 Bcl-2 family의 mRNA 변화를 RT-PCR을 이용해 살펴보았다. Bcl-2 family는 크게 3군, 즉 1) anti-apoptotic, 2) pro-apoptotic, 그리고 3) BH3 only protein으로 분류할 수 있으며, 본 연구에서 anti-apoptotic molecules인 Bcl-w는 모든 군에서 발현이 감소되었으며, Bcl-2는 발현이 증가 되었다. pro-apoptotic molecules에서는 Bad가 제 3군 (편평세포암종)에서 발현이 증가 되었고, 나머지는 감소하였다. BH-3 only protein에서는 Bmf가 제 2군에서, BBC3가 제 3군에서 발현이 증가하였고, 나머지는 모든 군에서 감소하였다. 결론적으로, 4-NQO로 유도된 백서의 발암단계에서, Bcl-2 family의 mRNA 양상은 다양하게 관찰되었으나, Bad 및 BBC3 mRNA가 제 3군에서, Bmf mRNA가 제 2군에서의 발현이 특별함을 알 수 있어, 다단계 발암과정에서의 구강암을 진단하는데 유용하리라 사료된다.

Effect of Atrazine, Perfluorooctanoic Acid and Zearalenone on IFNγ, TNFα, and IL-5 mRNA Expression in Jurkat Cells

  • Lee, Sung-Woo;Son, Hwa-Young;Yoon, Won-Kee;Jung, Ju-Young;Park, Bae-Keun;Cho, Eun-Sang;Park, Sang-Joon;Kim, Tae-Hwan;Ryu, Si-Yun
    • Biomolecules & Therapeutics
    • /
    • 제18권3호
    • /
    • pp.286-293
    • /
    • 2010
  • Cytokine production is a sensitive indicator for monitoring perturbations of the immune system by xenobiotics in animals and humans. In the present study, we evaluated the changes in $IFN{\gamma}$, IL-5 and $TNF{\alpha}$ mRNA expression after atrazine (ATZ), perfluorooctanoic acid (PFOA) or zearalenone (ZEA) exposure in Jurkat cells. The IC50 (concentration for a 50% inhibition of cell proliferation) of PFOA and ZEA after 3 days culture were $226.6\;{\mu}M$ and $52.6\;{\mu}M$, respectively. The effects of ATZ on cytokine expression followed in increasing order of $IFN{\gamma}$>IL-5>$TNF{\alpha}$ at $3\;{\mu}M$ and at the lower concentrations the degree of effects on three cytokines were less clear between the cytokines when compared to control level. PFOA had marked increasing effect in order of $IFN{\gamma}$>$TNF{\alpha}$>IL-5 mRNA expression at IC50, and these patterns were continued at the lower concentrations, IC50/2 and IC50/4. ZEA caused the overexpression of cytokine mRNAs in order of IL-5>$IFN{\gamma}$>$TNF{\alpha}$ at both IC50 and IC50/2, and at IC50/4 the overexpression order was IL-5>$TNF{\alpha}$. On other hand, $IFN{\gamma}$ was less distinct compared to the control. These data indicate that ATZ, PFOA and ZEA caused the overtranscription of $IFN{\gamma}$, IL-5 and $TNF{\alpha}$ mRNA, and the overproduction of these cytokines may eventually lead to immune disorders.

백굴채약침액(白屈菜藥針液)이 LPS로 유도(誘導)된 RAW 264.7 대식세포(大食細胞)에서의 항염증효과(抗炎症效果) (Effects of Chelidonii Herbal-acupuncture solution Anti-inflammatory in RAW 264.7 macrophages)

  • 박동천;박지현;이우경;이진규;서일복;김호현;김정선;김이화
    • Korean Journal of Acupuncture
    • /
    • 제21권2호
    • /
    • pp.125-137
    • /
    • 2004
  • Objectives : Recently, Herbal-acupuncture therapeutics has been used for the treatment of inflammatory diseases such as rheumatoid arthritis. Especially, we have been interested in chemical mediators concerned with inflammation such as prostaglandin, cytokine, nitrous oxide. The purpose of this study is investigated that the effect of Chelidonii Herbal-acupuncture solution in lipopolysaccharide-stimulated RAW 264.7 macrophages, performed several expeimental items : those are prostaglandin $E_2$, nitric oxide and cyclooxygenase-2. Methods : The cytotoxicity of Chelidonii Herbal-acupuncture solution in RAW 264.7 macrophages were measured by MTT-based cytotoxicity assay. In order to observe cyclooxygenase-2 mRNA expression in lipopolysaccharide-stimulated RAW 264.7 macrophages, RT-PCR was used. Prostaglandin $E_2$ formation and nitric oxide production was measured by competitive enzyme immunoassay and Griess assay. Results : 1.The MTT assay demonstrated that cytotoxic effect of Chelidonii Herbal-acupuncture solution in RAW 264.7 macrophages were not appeared before concentration of 1mg/ml. 2.Chelidonii Herbal-acupuncture solution inhibited cyclooxygenase-2 mRNA expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. 3. Chelidonii Herbal-acupuncture solution inhibited nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophages. 4. Chelidonii Herbal-acupuncture solution inhibited prostaglandin $E_2$ formation in lipopolysaccharide-stimulated RAW 264.7 macrophages. Conclusions : On the basis of these results, It was shown that Chelidonii Herbal-acupuncture solution is significantly able to inhibit the production of $PGE_2$ and NO, as well as COX-2 mRNA expression. Our results may provide new mechanism by which Chelidonii Herbal-acupuncture solution accounts for its beneficial effect on accelerating wound healing and anti-inflammation.

  • PDF

Thymosin Beta-4, Actin-Sequestering Protein Regulates Vascular Endothelial Growth Factor Expression via Hypoxia-Inducible Nitric Oxide Production in HeLa Cervical Cancer Cells

  • Ryu, Yun-Kyoung;Lee, Jae-Wook;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • 제23권1호
    • /
    • pp.19-25
    • /
    • 2015
  • Vascular endothelial growth factor (VEGF) is an important regulator of neovascularization. Hypoxia inducible nitric oxide (NO) enhanced the expression of VEGF and thymosin beta-4 ($T{\beta}4$), actin sequestering protein. Here, we investigated whether NO-mediated VEGF expression could be regulated by $T{\beta}4$ expression in HeLa cervical cancer cells. Hypoxia inducible NO production and VEGF expression were reduced by small interference (si) RNA of $T{\beta}4$. Hypoxia response element (HRE)-luciferase activity and VEGF expression were increased by the treatment with N-(${\beta}$-D-Glucopyranosyl)-N2-acetyl-S-nitroso-D, L-penicillaminamide (SNAP-1), to generate NO, which was inhibited by the inhibition of $T{\beta}4$ expression with $T{\beta}4$-siRNA. In hypoxic condition, HRE-luciferase activity and VEGF expression were inhibited by the treatment with $N^G$-monomethyl-L-arginine (L-NMMA), an inhibitor to nitric oxide synthase (NOS), which is accompanied with a decrease in $T{\beta}4$ expression. VEGF expression inhibited by L-NMMA treatment was restored by the transfection with pCMV-$T{\beta}4$ plasmids for $T{\beta}4$ overexpression. Taken together, these results suggest that $T{\beta}4$ could be a regulator for the expression of VEGF via the maintenance of NOS activity.

Role of Advanced Glycation End Products in TGF-β1 and Fibronectin Expression in Mesangial Cells Cultured under High Glucose

  • HA Hunjoo;KIM Hwa-Jung;LEE Hi Bahl
    • Biomolecules & Therapeutics
    • /
    • 제13권3호
    • /
    • pp.190-197
    • /
    • 2005
  • Advanced glycation end products (AGE) have been implicated in the pathogenesis of diabetic complications including nephropathy. However, the role of AGE in the activation of mesangial cells cultured under high glucose has not been elucidated. The effects of aminoguanidine, which prevents formation of AGE and protein cross-linking, on the synthesis of $TGF-{\beta}1$ and fibronectin by rat mesangial cells cultured under high glucose for 2 weeks were examined and compared with the effects of $N^G$-nitro-L-arginine methyl ester (NAME), a selective nitric oxide synthase inhibitor, because aminoguanidine also inhibits the inducible nitric oxide synthase. Culture of mesangial cells in 30 mM (high) glucose for 2 weeks induced 1.5-fold (ELISA) and 1.9-fold (Western blot analysis) increase in AGE in the culture media compared to 5.6 mM (control) glucose. Northern blot analysis revealed 1.5-fold increase in $TGF-{\beta}1$ and 1.7-fold increase in fibronectin mRNA expression in cells cultured under high glucose compared to control glucose. Increases in mRNA expression were followed by increased protein synthesis. Mink lung epithelial cell growth inhibition assay revealed 1.4-fold increase in $TGF-{\beta}1$ protein in high glucose media compared to control. Fibronectin protein also increased 2.1-fold that of control glucose by Western blot analysis. Administration of aminoguanidine suppressed AGE formation in a dose dependent manner and at the same time suppressed $TGF-{\beta}1$ and fibronectin synthesis by mesangial cells cultured in both control and high glucose. In contrast, NAME did not affect high glucose-induced changes. These findings support a role for AGE in high glucose-induced upregulation of $TGF-{\beta}1$ and fibronectin synthesis by mesangial cells.

ATF3 Mediates Anti-Cancer Activity of Trans-10, cis-12-Conjugated Linoleic Acid in Human Colon Cancer Cells

  • Kim, Kui-Jin;Lee, Jihye;Park, Yeonhwa;Lee, Seong-Ho
    • Biomolecules & Therapeutics
    • /
    • 제23권2호
    • /
    • pp.134-140
    • /
    • 2015
  • Conjugated linoleic acids (CLA) are a family of isomers of linoleic acid. CLA increases growth arrest and apoptosis of human colorectal cancer cells through an isomer-specific manner. ATF3 belongs to the ATF/CREB family of transcription factors and is associated with apoptosis in colorectal cancer. The present study was performed to investigate the molecular mechanism by which t10, c12-CLA stimulates ATF3 expression and apoptosis in human colorectal cancer cells. t10, c12-CLA increased an apoptosis in human colorectal cancer cells in dose dependent manner. t10, c12-CLA induced ATF3 mRNA and luciferase activity of ATF3 promoter in a dose-dependent manner. The responsible region for ATF3 transcriptional activation by t10, c12-CLA is located between -147 and -1850 of ATF3 promoter. mRNA stability of ATF3 was not affected by t10, c12-CLA treatment. t10, c12-CLA increases $GSK3{\beta}$ expression and suppresses IGF-1-stimulated phosphorylation of Akt. The knockdown of ATF3 suppressed expression of $GSK3{\beta}$ and NAG-1 and PARP cleavage. The results suggest that t10, c12-CLA induces apoptosis through ATF3-mediated pathway in human colorectal cancer cells.