• Title/Summary/Keyword: RNA sequencing (RNA-seq)

Search Result 160, Processing Time 0.031 seconds

A protein interactions map of multiple organ systems associated with COVID-19 disease

  • Bharne, Dhammapal
    • Genomics & Informatics
    • /
    • v.19 no.2
    • /
    • pp.14.1-14.6
    • /
    • 2021
  • Coronavirus disease 2019 (COVID-19) is an on-going pandemic disease infecting millions of people across the globe. Recent reports of reduction in antibody levels and the re-emergence of the disease in recovered patients necessitated the understanding of the pandemic at the core level. The cases of multiple organ failures emphasized the consideration of different organ systems while managing the disease. The present study employed RNA sequencing data to determine the disease associated differentially regulated genes and their related protein interactions in several organ systems. It signified the importance of early diagnosis and treatment of the disease. A map of protein interactions of multiple organ systems was built and uncovered CAV1 and CTNNB1 as the top degree nodes. A core interactions sub-network was analyzed to identify different modules of functional significance. AR, CTNNB1, CAV1, and PIK3R1 proteins were unfolded as bridging nodes interconnecting different modules for the information flow across several pathways. The present study also highlighted some of the druggable targets to analyze in drug re-purposing strategies against the COVID-19 pandemic. Therefore, the protein interactions map and the modular interactions of the differentially regulated genes in the multiple organ systems would incline the scientists and researchers to investigate in novel therapeutics for the COVID-19 pandemic expeditiously.

Complete genome sequence of Salmonella enterica strain K_SA184, multidrug resistance bacterium isolated from lamb (Ovis aries)

  • Kim, Hyeri;Cho, Jae Hyoung;Cho, Jin Ho;Song, Minho;Shin, Hakdong;Kim, Sheena;Kim, Eun Sol;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.194-197
    • /
    • 2021
  • Salmonella enterica is a representative foodborne pathogen in the world. The S. enterica strain K_SA184 was isolated from the lamb (Ovis aries), which was collected from a local traditional market in South Korea. In this study, the S. enterica strain K_SA184 was sequenced using PacBio RS II and Illumina NextSeq 500 platforms. The final complete genome of the S. enterica strain K_SA184 consist of one circular chromosome (4,725,087 bp) with 52.3% of guanine + cytosine (G + C) content, 4,363 of coding sequence (CDS), 85 of tRNA, and 22 of rRNA genes. The S. enterica strain K_SA184 genome includes encoding virulence genes, such as Type III secretion systems and multidrug resistance related genes.

Complete genome sequence of Escherichia coli K_EC180, a bacterium producing shiga-like toxin isolated from swine feces

  • Kim, Hyeri;Cho, Jae Hyoung;Cho, Jin Ho;Song, Minho;Shin, Hakdong;Kim, Sheena;Kim, Eun Sol;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.461-464
    • /
    • 2021
  • Escherichia coli normally colonizes the lower intestine of animals and humans, but some serotypes are foodborne pathogens. The Escherichia coli K_EC180 was isolated from swine feces that were collected from a weaner pig. In this genome announcement, E. coli K_EC180 was sequenced using PacBio RS II and Illumina NextSeq 500 platforms. The complete chromosome of E. coli K_EC180 is composed of one circular chromosome (5,017,281 bp) with 50.4% of guanine + cytosine (G + C) content, 4,935 of coding sequence (CDS), 88 of tRNA, and 22 of rRNA genes. The complete genome of E. coli K_EC180 contains the toxin genes such as shiga-like toxins (stxA and stxB).

Complete genome sequence of Treponema pedis GNW45 isolated from dairy cattle with active bovine digital dermatitis in Korea

  • Hector Espiritu;Lovelia Mamuad;Edeneil Jerome Valete;Sang-Suk Lee;Yong-Il Cho
    • Journal of Animal Science and Technology
    • /
    • v.66 no.5
    • /
    • pp.1079-1082
    • /
    • 2024
  • Treponema pedis, a fastidious anaerobic spirochete, is one of the main pathogens involved in the development and progression of bovine digital dermatitis (BDD), a lameness-causing hoof infection in cattle. Here, the complete genome sequencing of T. pedis GNW45 isolated from a dairy cow infected with BDD, was presented. Libraries for long and short reads were sequenced using PacBioRSII and Illimuna HiSeqXTen platforms, respectively. De-novo assembly was done using the long reads, producing a circular contig, by which the short reads were aligned to generate a more accurate genome sequence. The genome has a total size of 3,077,465 base pairs, with 36.84% guanine-cytosine content. A total of 2,749 protein-coding sequences, seven ribosomal RNA's, and 45 transfer RNA's were annotated. Functional analysis revealed genes associated with pathogenicity and survivability in the complex pathobiome of BDD. This study provided novel insights into the survival and pathogenic mechanisms of T. pedis GNW45.

Exploring differentially expressed genes related to metabolism by RNA-Seq in porcine embryonic fibroblast after insulin treatment

  • Yingjuan, Liang;Jinpeng, Wang;Xinyu, Li;Shuang, Wu;Chaoqian, Jiang;Yue, Wang;Xuechun, Li;Zhong-Hua, Liu;Yanshuang, Mu
    • Journal of Veterinary Science
    • /
    • v.23 no.6
    • /
    • pp.90.01-90.13
    • /
    • 2022
  • Background: Insulin regulates glucose homeostasis and has important effects on metabolism, cell growth, and differentiation. Depending on the cell type and physiological context, insulin signal has specific pathways and biological outcomes in different tissues and cells. For studying the signal pathway of insulin on glycolipid metabolism in porcine embryonic fibroblast (PEF), we used high-throughput sequencing to monitor gene expression patterns regulated by insulin. Objectives: The goal of our research was to see how insulin affected glucose and lipid metabolism in PEFs. Methods: We cultured the PEFs with the addition of insulin and sampled them at 0, 48, and 72 h for RNA-Seq analysis in triplicate for each time point. Results: At 48 and 72 h, 801 and 1,176 genes were differentially expressed, respectively. Of these, 272 up-regulated genes and 264 down-regulated genes were common to both time points. Gene Ontology analysis was used to annotate the functions of the differentially expressed genes (DEGs), the biological processes related to lipid metabolism and cell cycle were dominant. And the DEGs were significantly enriched in interleukin-17 signaling pathway, phosphatidylinositol-3-kinase-protein kinase B signaling pathway, pyruvate metabolism, and others pathways related to lipid metabolism by Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Conclusions: These results elucidate the transcriptomic response to insulin in PEF. The genes and pathways involved in the transcriptome mechanisms provide useful information for further research into the complicated molecular processes of insulin in PEF.

Identification of Uncharacterized Anti-microbial Peptides Derived from the European Honeybee (꿀벌 Apis mellifera에서 유래 한 특성화 되지 않은 항균성 펩티드의 동정)

  • Park, Hee Geun;Kim, Dong Won;Lee, Man-Young;Choi, Yong Soo
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.64-69
    • /
    • 2020
  • The European honeybee (Apis mellifera L.) has multiple anti-microbial peptides, but many were unknown and demands for their characterization have increased. This study therefore focused on identifying novel anti-microbial peptides (AMPs) from A. mellifera L. To obtain high-throughput transcriptome data of the honeybee, we implemented next-generation sequencing (NGS), isolating novel AMPs from total RNA, and generated 15,314 peptide sequences, including 44 known, using Illumina HiSeq 2500 technology. The uncharacterized peptides were identified based on specific features of possible AMPs predicted in the sequencing analysis. AMP5, one such uncharacterized peptide, was expressed in the epidermis, body fat, and venom gland of the honeybee. We chemically synthesized this peptide and tested its anti-bacterial activity against Gram-negative Escherichia coli (KACC 10005) and Gram-positive Bacillus thuringiensis (KACC 10168) by anti-microbial assay. AMP5 exhibited anti-bacterial activity against E. coli (MIC50=22.04±0.66 μM) but not against B. thuringiensis. When worker bees were injected with E. coli, AMP5 was up-regulated in the body fat. This study therefore identified AMP5 in adult European honeybees and confirmed its anti-bacterial activity against Gram-negative E. coli.

Benefits of procyanidins on gut microbiota in Bama minipigs and implications in replacing antibiotics

  • Zhao, Tingting;Shen, Xiaojuan;Dai, Chang;Cui, Li
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.798-807
    • /
    • 2018
  • Several studies have reported the effect of absorption of procyanidins and their contribution to the small intestine. However, differences between dietary interventions of procyanidins and interventions via antibiotic feeding in pigs are rarely reported. Following 16S rRNA gene Illumina MiSeq sequencing, we observed that both procyanidin administration for 2 months (procyanidin-1 group) and continuous antibiotic feeding for 1 month followed by procyanidin for 1 month (procyanidin-2 group) increased the number of operational taxonomic units, as well as the Chao 1 and ACE indices, compared to those in pigs undergoing antibiotic administration for 2 months (antibiotic group). The genera Fibrobacter and Spirochaete were more abundant in the antibiotic group than in the procyanidin-1 and procyanidin-2 groups. Principal component analysis revealed clear separations among the three groups. Additionally, using the online Molecular Ecological Network Analyses pipeline, three co-occurrence networks were constructed; Lactobacillus was in a co-occurrence relationship with Trichococcus and Desulfovibrio and a co-exclusion relationship with Bacillus and Spharerochaeta. Furthermore, metabolic function analysis by phylogenetic investigation of communities by reconstruction of unobserved states demonstrated modulation of pathways involved in the metabolism of carbohydrates, amino acids, energy, and nucleotides. These data suggest that procyanidin influences the gut microbiota and the intestinal metabolic function to produce beneficial effects on metabolic homeostasis.

Whole-transcriptome analyses of the Sapsaree, a Korean natural monument, before and after exercise-induced stress

  • Kim, Ji-Eun;Choe, Junkyung;Lee, Jeong Hee;Kim, Woong Bom;Cho, Whan;Ha, Ji Hong;Kwon, Ki Jin;Han, Kook Il;Jo, Sung-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.58 no.4
    • /
    • pp.17.1-17.7
    • /
    • 2016
  • Background: The Sapsaree (Canis familiaris) is a Korean native dog that is very friendly, protective, and loyal to its owner, and is registered as a natural monument in Korea (number: 368). To investigate large-scale gene expression profiles and identify the genes related to exercise-induced stress in the Sapsaree, we performed whole-transcriptome RNA sequencing and analyzed gene expression patterns before and after exercise performance. Results: We identified 525 differentially expressed genes in ten dogs before and after exercise. Gene Ontology classification and KEGG pathway analysis revealed that the genes were mainly involved in metabolic processes, such as programmed cell death, protein metabolic process, phosphatidylinositol signaling system, and cation binding in cytoplasm. The ten Sapsarees could be divided into two groups based on the gene expression patterns before and after exercise. The two groups were significantly different in terms of their basic body type ($p{\leq}0.05$). Seven representative genes with significantly different expression patterns before and after exercise between the two groups were chosen and characterized. Conclusions: Body type had a significant effect on the patterns of differential gene expression induced by exercise. Whole-transcriptome sequencing is a useful method for investigating the biological characteristics of the Sapsaree and the large-scale genomic differences of canines in general.

HPAI-resistant Ri chickens exhibit elevated antiviral immune-related gene expression

  • Thi Hao Vu;Jubi Heo;Yeojin Hong;Suyeon Kang;Ha Thi Thanh Tran;Hoang Vu Dang;Anh Duc Truong;Yeong Ho Hong
    • Journal of Veterinary Science
    • /
    • v.24 no.1
    • /
    • pp.13.1-13.11
    • /
    • 2023
  • Background: Highly pathogenic avian influenza viruses (HPAIVs) is an extremely contagious and high mortality rates in chickens resulting in substantial economic impact on the poultry sector. Therefore, it is necessary to elucidate the pathogenic mechanism of HPAIV for infection control. Objective: Gene set enrichment analysis (GSEA) can effectively avoid the limitations of subjective screening for differential gene expression. Therefore, we performed GSEA to compare HPAI-infected resistant and susceptible Ri chicken lines. Methods: The Ri chickens Mx(A)/BF2(B21) were chosen as resistant, and the chickens Mx(G)/BF2(B13) were selected as susceptible by genotyping the Mx and BF2 genes. The tracheal tissues of HPAIV H5N1 infected chickens were collected for RNA sequencing followed by GSEA analysis to define gene subsets to elucidate the sequencing results. Results: We identified four differentially expressed pathways, which were immune-related pathways with a total of 78 genes. The expression levels of cytokines (IL-1β, IL-6, IL-12), chemokines (CCL4 and CCL5), type interferons and their receptors (IFN-β, IFNAR1, IFNAR2, and IFNGR1), Jak-STAT signaling pathway genes (STAT1, STAT2, and JAK1), MHC class I and II and their co-stimulatory molecules (CD80, CD86, CD40, DMB2, BLB2, and B2M), and interferon stimulated genes (EIF2AK2 and EIF2AK1) in resistant chickens were higher than those in susceptible chickens. Conclusions: Resistant Ri chickens exhibit a stronger antiviral response to HPAIV H5N1 compared with susceptible chickens. Our findings provide insights into the immune responses of genetically disparate chickens against HPAIV.

Metagenomic Approach to Identifying Foodborne Pathogens on Chinese Cabbage

  • Kim, Daeho;Hong, Sanghyun;Kim, You-Tae;Ryu, Sangryeol;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.227-235
    • /
    • 2018
  • Foodborne illness represents a major threat to public health and is frequently attributed to pathogenic microorganisms on fresh produce. Recurrent outbreaks often come from vegetables that are grown close to or within the ground. Therefore, the first step to understanding the public health risk of microorganisms on fresh vegetables is to identify and describe microbial communities. We investigated the phyllospheres on Chinese cabbage (Brassica rapa subsp. pekinensis, N = 54). 16S rRNA gene amplicon sequencing targeting the V5-V6 region of 16S rRNA genes was conducted by employing the Illumina MiSeq system. Sequence quality was assessed, and phylogenetic assessments were performed using the RDP classifier implemented in QIIME with a bootstrap cutoff of 80%. Principal coordinate analysis was performed using a weighted Fast UniFrac matrix. The average number of sequence reads generated per sample was 34,584. At the phylum level, bacterial communities were composed primarily of Proteobacteria and Bacteroidetes. The most abundant genera on Chinese cabbages were Chryseobacterium, Aurantimonadaceae_g, Sphingomonas, and Pseudomonas. Diverse potential pathogens, such as Pantoea, Erwinia, Klebsiella, Yersinia, Bacillus, Staphylococcus, Salmonella, and Clostridium were also detected from the samples. Although further epidemiological studies will be required to determine whether the detected potential pathogens are associated with foodborne illness, our results imply that a metagenomic approach can be used to detect pathogenic bacteria on fresh vegetables.