• Title/Summary/Keyword: RNA expression platform

검색결과 30건 처리시간 0.029초

Construction of a High-Quality Yeast Two-Hybrid Library and Its Application in Identification of Interacting Proteins with Brn1 in Curvularia lunata

  • Gao, Jin-Xin;Jing, Jing;Yu, Chuan-Jin;Chen, Jie
    • The Plant Pathology Journal
    • /
    • 제31권2호
    • /
    • pp.108-114
    • /
    • 2015
  • Curvularia lunata is an important maize foliar fungal pathogen that distributes widely in maize growing area in China, and several key pathogenic factors have been isolated. An yeast two-hybrid (Y2H) library is a very useful platform to further unravel novel pathogenic factors in C. lunata. To construct a high-quality full length-expression cDNA library from the C. lunata for application to pathogenesis-related protein-protein interaction screening, total RNA was extracted. The SMART (Switching Mechanism At 5' end of the RNA Transcript) technique was used for cDNA synthesis. Double-stranded cDNA was ligated into the pGADT7-Rec vector with Herring Testes Carrier DNA using homologous recombination method. The ligation mixture was transformed into competent yeast AH109 cells to construct the primary cDNA library. Eventually, a high qualitative library was successfully established according to an evaluation on quality. The transformation efficiency was about $6.39{\times}10^5$ transformants/$3{\mu}g$ pGADT7-Rec. The titer of the primary cDNA library was $2.5{\times}10^8cfu/mL$. The numbers for the cDNA library was $2.46{\times}10^5$. Randomly picked clones show that the recombination rate was 88.24%. Gel electrophoresis results indicated that the fragments ranged from 0.4 kb to 3.0 kb. Melanin synthesis protein Brn1 (1,3,8-hydroxynaphthalene reductase) was used as a "bait" to test the sufficiency of the Y2H library. As a result, a cDNA clone encoding VelB protein that was known to be involved in the regulation of diverse cellular processes, including control of secondary metabolism containing melanin and toxin production in many filamentous fungi was identified. Further study on the exact role of the VelB gene is underway.

NA-Seq를 이용한 제주산 메밀의 발아초기 전사체 프로파일 분석 (Transcriptomic Profile Analysis of Jeju Buckwheat using RNA-Seq Data)

  • 한송이;정성진;오대주;정용환;김찬식;김재훈
    • 한국산학기술학회논문지
    • /
    • 제19권1호
    • /
    • pp.537-545
    • /
    • 2018
  • 본 연구에서는 메밀의 발아초기에 발현되는 전사체의 다양한 정보 수집을 위해 양절메밀과 대관 3-3호의 RNA를 추출하여 전사체 분석을 수행하였다. 제주산 양절메밀과 대관3-3호의 종자 및 발아 후 12, 24, 36시간별로 total RNA를 추출하고, llumina Hiseq 2000 플랫폼을 사용하여 시퀀싱 하였다. SolexaQA package의 DynamicTrim과 LengthsORT 프로그램으로 이용하여 raw 데이터 분석을 실시한 후, 어셈블리(assembly)와 annotation을 수행하였다. RNA-seq raw 데이터로부터 약 84.2%, 81.5%에 해당하는 16.5Gb, 16.2Gb의 transcriptome 데이터를 확보하였다. 47Mb에 해당하는 43,494개의 대표적인 전사체(representative transcripts)를 확보하였고, 그 중에서 annotation DB와 서열 유사도를 갖는 서열은 23,165개로 확인되었다. 메밀의 representative transcripts 유전자의 유전자 온톨로지(gene ontology) 분석결과, biological process는 metabolic process (49.49%)에서, cellular components는 cell (46.12%)에서, molecular function은 catalyltic activity (80.43%)에서 유전자가 많이 분포되어 있는 것을 확인하였다. 종자의 발아에 관련된 gibberellin receptor GID1C의 경우에는 양절메밀, 대관 3-3호의 발현양이 모두 시간이 지남에 따라 증가되는 것을 확인할 수 있었으며, gibberellin 20-oxidase1의 경우에는 양절메밀에서는 발아 후 12 시간이내에 증가되었으나, 대관 3-3호에서는 36시간까지 유전자 발현양 증가하는 것을 확인할 수 있었다. 이러한 제주산 메밀의 발아초기 단계별 전사체 분석 데이터는 종간의 기능적, 형태학적 차이를 일으키는 메커니즘 규명에 도움을 줄 것으로 사료된다.

사이프러스 에센셜 오일의 흡입이 전임상 실험동물의 손상된 학습능력과 기억력에 미치는 영향 (Cypress Essential Oil Improves Scopolamine-induced Learning and Memory Deficit in C57BL/6 mice)

  • 이길용;이찬;백정인;배근영;박찬익;장정희
    • 대한본초학회지
    • /
    • 제35권5호
    • /
    • pp.33-39
    • /
    • 2020
  • Objectives : Increasing evidence supports the biological and pharmacological activities of essential oils on the central nervous system such as pain, anxiety, attention, arousal, relaxation, sedation and learning and memory. The purpose of present work is to investigate the protective effect and molecular mechanism of cypress essential oil (CEO) against scopolamine (SCO)-induced cognitive impairments in C57BL/6 mice. Methods : A series of behavior tests such as Morris water maze, passive avoidance, and fear conditioning tests were conducted to monitor learning and memory functions. Immunoblotting and RT-PCR were also performed in the hippocampal tissue to determine the underlying mechanism of CEO. Results : SCO induced cognitive impairments as assessed by decreased step-through latency in passive avoidance test, relatively low freezing time in fear conditioning test, and increased time spent to find the hidden platform in Morris water maze test. Conversely, CEO inhalation significantly reversed the SCO-induced cognitive impairments in C57BL/6 mice comparable to control levels. To elucidate the molecular mechanisms of memory enhancing effect of CEO we have examined the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. CEO effectively elevated the protein as well as mRNA expression of BDNF via activation of cAMP response element binding protein (CREB). Conclusions : Our findings suggest that CEO inhalation effectively restored the SCO-impaired cognitive functions in C56BL/6 mice. This learning and memory enhancing effect of CEO was partly mediated by up-regulation of BDNF via activation of CREB.

식물체에 감염성 질병을 유발하는 바이로이드 검출 및 진단 방법 (The Detection and Diagnosis Methods of Infectious Viroids caused Plant Diseases)

  • 이세희;김양훈;안지영
    • 생명과학회지
    • /
    • 제26권5호
    • /
    • pp.620-631
    • /
    • 2016
  • 바이로이드는 매우 작은 RNA 분자로 구성되어 있으며, 외피 단백질이 없고 오로지 식물에만 감염되어 질병을 유발한다. 바이로이드 감염 질병을 예방하거나 진단하는 것은 상당히 어려운 일이며, 이는 병징이 초기에는 발견되지 않고 수확기에 접어들어서 발견되기 때문이다. 한편, 혈청학적인 방법은 식물 병원체를 검출하기 위해 주로 사용되었으나 바이로이드는 핵산인 RNA로만 구성되어 있기 때문에 이 방법으로 검출할 수가 없다. 때문에 바이로이드를 검출하기 위해 주로 사용되는 방법은 분자 생물학적인 방법으로, 초기에는 바이로이드의 분자적인 크기와 구조적 특징을 이용한 겔 전기 영동 방법이 주로 사용되었다. 그 후에는 역전사 반응과 중합효소 연쇄반응을 접목시킨 역전사 중합효소 연쇄반응(RT-PCR) 방법이 활용되었고, 그에 대한 효율적인 결과 확인을 위해 형광 물질을 도입한 실시간 역전사 중합효소 연쇄반응(Real-time RT-PCR)이 도입되었다. 그러나 그들은 온도를 변화시키기 위한 값비싼 기기와 전문적인 인력이 필요함으로 현장에서는 활용되기가 어렵다. 최근 개발된 고리 기반의 등온 증폭법(Loop-mediated isothermal amplification)의 경우, 온도의 변화가 필요 없어 비싼 온도 조절 기기가 필요하지 않다. 또한 매우 높은 증폭 효율을 지니며 반응 시간이 짧은 등의 여러 장점을 지니고 있기에 최근 현장 진단용 기술에 도입되고 있다. 이러한 배경으로, 이 총설에서는 바이로이드 유발 질병에 대하여 요약하고 그에 대한 검출 및 진단 방법에 대한 연구 동향에 대하여 기술하였다.

Transcriptome Profiling and Characterization of Drought-Tolerant Potato Plant (Solanum tuberosum L.)

  • Moon, Ki-Beom;Ahn, Dong-Joo;Park, Ji-Sun;Jung, Won Yong;Cho, Hye Sun;Kim, Hye-Ran;Jeon, Jae-Heung;Park, Youn-il;Kim, Hyun-Soon
    • Molecules and Cells
    • /
    • 제41권11호
    • /
    • pp.979-992
    • /
    • 2018
  • Potato (Solanum tuberosum L.) is the third most important food crop, and breeding drought-tolerant varieties is vital research goal. However, detailed molecular mechanisms in response to drought stress in potatoes are not well known. In this study, we developed EMS-mutagenized potatoes that showed significant tolerance to drought stress compared to the wild-type (WT) 'Desiree' cultivar. In addition, changes to transcripts as a result of drought stress in WT and drought-tolerant (DR) plants were investigated by de novo assembly using the Illumina platform. One-week-old WT and DR plants were treated with -1.8 Mpa polyethylene glycol-8000, and total RNA was prepared from plants harvested at 0, 6, 12, 24, and 48 h for subsequent RNA sequencing. In total, 61,100 transcripts and 5,118 differentially expressed genes (DEGs) displaying up- or down-regulation were identified in pairwise comparisons of WT and DR plants following drought conditions. Transcriptome profiling showed the number of DEGs with up-regulation and down-regulation at 909, 977, 1181, 1225 and 826 between WT and DR plants at 0, 6, 12, 24, and 48 h, respectively. Results of KEGG enrichment showed that the drought tolerance mechanism of the DR plant can mainly be explained by two aspects, the 'photosynthetic-antenna protein' and 'protein processing of the endoplasmic reticulum'. We also divided eight expression patterns in four pairwise comparisons of DR plants (DR0 vs DR6, DR12, DR24, DR48) under PEG treatment. Our comprehensive transcriptome data will further enhance our understanding of the mechanisms regulating drought tolerance in tetraploid potato cultivars.

Rehmannia glutinosa Ameliorates Scopolamine-Induced Learning and Memory Impairment in Rats

  • Lee, Bom-Bi;Shim, In-Sop;Lee, Hye-Jung;Hahm, Dae-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권8호
    • /
    • pp.874-883
    • /
    • 2011
  • Many studies have shown that the steamed root of Rehmannia glutinosa (SRG), which is widely used in the treatment of various neurodegenerative diseases in the context of Korean traditional medicine, is effective for improving cognitive and memory impairments. The purpose of this study was to examine whether SRG extracts improved memory defects caused by administering scopolamine (SCO) into the brains of rats. The effects of SRG on the acetylcholinergic system and proinflammatory cytokines in the hippocampus were also investigated. Male rats were administered daily doses of SRG (50, 100, and 200 mg/kg, i.p.) for 14 days, 1 h before scopolamine injection (2 mg/kg, i.p.). After inducing cognitive impairment via scopolamine administration, we conducted a passive avoidance test (PAT) and the Morris water maze (MWM) test as behavioral assessments. Changes in cholinergic system reactivity were also examined by measuring the immunoreactive neurons of choline acetyltransferase (ChAT) and the reactivity of acetylcholinesterase (AchE) in the hippocampus. Daily administration of SRG improved memory impairment according to the PAT, and reduced the escape latency for finding the platform in the MWM. The administration of SRG consistently significantly alleviated memory-associated decreases in cholinergic immunoreactivity and decreased interleukin-$1{\beta}$ (IL-$1{\beta}$) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) mRNA expression in the hippocampus. The results demonstrated that SRG had a significant neuroprotective effect against the neuronal impairment and memory dysfunction caused by scopolamine in rats. These results suggest that SRG may be useful for improving cognitive functioning by stimulating cholinergic enzyme activities and alleviating inflammatory responses.

Elucidation of the Inhibitory Mechanisms of Nipponoparmelia laevior Lichen Extract against Influenza A (H1N1) Virus through Proteomic Analyses

  • Cuong, Tran Van;Cho, Se-Young;Kwon, Joseph;Kim, Duwoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1155-1164
    • /
    • 2019
  • Lichens contain diverse bioactive secondary metabolites with various chemical and biological properties, which have been widely studied. However, details of the inhibitory mechanisms of their secondary metabolites against influenza A virus (IAV) have not been documented. Here, we investigated the antiviral effect of lichen extracts, obtained from South Korea, against IAV in MDCK cells. Of the lichens tested, Nipponoparmelia laevior (LC24) exhibited the most potent inhibitory effect against IAV infection. LC24 extract significantly increased cell viability, and reduced apoptosis in IAV-infected cells. The LC24 extract also markedly reduced (~ 3.2 log-fold) IAV mRNA expression after 48 h of infection. To understand the antiviral mechanism of LC24 against IAV, proteomic (UPLC-$HDMS^E$) analysis was performed to compare proteome modulation in IAV-infected (V) vs. mock (M) and LC24+IAV (LCV) vs. V cells. Based on Ingenuity Pathway Analysis (IPA), LC24 inhibited IAV infection by modulating several antiviral-related genes and proteins (HSPA4, HSPA5, HSPA8, ANXA1, ANXA2, $HIF-1{\alpha}$, AKT1, MX1, HNRNPH1, HNRNPDL, PDIA3, and VCP) via different signaling pathways, including $HIF-1{\alpha}$ signaling, unfolded protein response, and interferon signaling. These molecules were identified as the specific biomarkers for controlling IAV in vitro and further confirmation of their potential against IAV in vivo is required. Our findings provide a platform for further studies on the application of lichen extracts against IAV.

Evaluation of host and bacterial gene modulation during Lawsonia intracellularis infection in immunocompetent C57BL/6 mouse model

  • Kirthika, Perumalraja;Park, Sungwoo;Jawalagatti, Vijayakumar;Lee, John Hwa
    • Journal of Veterinary Science
    • /
    • 제23권3호
    • /
    • pp.41.1-41.15
    • /
    • 2022
  • Background: Proliferative enteritis caused by Lawsonia intracellularis undermines the economic stability of the swine industry worldwide. The development of cost-effective animal models to study the pathophysiology of the disease will help develop strategies to counter this bacterium. Objectives: This study focused on establishing a model of gastrointestinal (GI) infection of L. intracellularis in C57BL/6 mice to evaluate the disease progression and lesions of proliferative enteropathy (PE) in murine GI tissue. Methods: We assessed the murine mucosal and cell-mediated immune responses generated in response to inoculation with L. intracellularis. Results: The mice developed characteristic lesions of the disease and shed L. intracellularis in the feces following oral inoculation with 5 × 107 bacteria. An increase in L. intracellularis 16s rRNA and groEL copies in the intestine of infected mice indicated intestinal dissemination of the bacteria. The C57BL/6 mice appeared capable of modulating humoral and cell-mediated immune responses to L. intracellularis infection. Notably, the expression of genes for the vitamin B12 receptor and for secreted and membrane-bound mucins were downregulated in L. intracellularis -infected mice. Furthermore, L. intracellularis colonization of the mouse intestine was confirmed by the immunohistochemistry and western blot analyses. Conclusions: This is the first study demonstrating the contributions of bacterial chaperonin and host nutrient genes to PE using an immunocompetent mouse model. This mouse infection model may serve as a platform from which to study L. intracellularis infection and develop potential vaccination and therapeutic strategies to treat PE.

참다래 유전체 연구 동향 (Current status and prospects of kiwifruit (Actinidia chinensis) genomics)

  • 김성철;김호방;좌재호;송관정
    • Journal of Plant Biotechnology
    • /
    • 제42권4호
    • /
    • pp.342-349
    • /
    • 2015
  • 키위는 세계적으로 1970년대 이후 상업화되어 최근 재배가 급속히 확대되고 있는 신종 과수이며, 국내에서도 재배와 소비량이 급격히 증가하고 있다. 키위는 자웅이주 낙엽성 덩굴 식물로 과피에 털이 있고 과육색이 다양한 특성을 가지고 있으며 배수성도 다양하나, 산업적인 품종 구성은 매우 단순하다. 독특한 식물적 특성에 기인한 진화 및 생물학적 관점은 물론 다양한 품종의 효율적 개발의 요구에 따라 최근 유전체 해석 및 활용 연구가 활발히 진행되고 있다. 키위 유전체 draft 서열과 엽록체 서열이 Illumina HiSeq 기반으로 각각 2013년과 2015년에 해독 되었으며 gene annotation 연구가 계속적으로 진행되고 있다. 과거 ESTs 기반의 전사체 분석에서 최근 RNA-seq 기반의 전사체 분석으로 전환되어 과일의 아스코르브산 생합성, 과육색 발현 및 성숙, 그리고 나무의 궤양병 저항성 관련 유전적 발현조절과 유전자 발굴 연구가 중점적으로 진행되고 있다. 전통육종의 효율을 증대하기 위한 분자표지 개발 및 유전자지도 작성에 있어서는 이전의 RFLP, RAPD, AFLP 기반의 연구에서 벗어나 NGS 기반의 유전체 및 전사체 정보의 해독에 의한 SSR 및 SNP 기반의 농업적으로 중요한 형질연관 분자마커 개발 및 고밀도 유전자지도 작성이 연구되고 있다. 그러나 국내 연구는 아직 제한적인 수준에서 진행되고 있다. 향후 키위 유전체 및 전사체 분석 연구는 가까운 장래에 실질적으로 분자육종에 적용될 것으로 전망된다.

Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots

  • Jayakodi, Murukarthick;Lee, Sang-Choon;Park, Hyun-Seung;Jang, Woojong;Lee, Yun Sun;Choi, Beom-Soon;Nah, Gyoung Ju;Kim, Do-Soon;Natesan, Senthil;Sun, Chao;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제38권4호
    • /
    • pp.278-288
    • /
    • 2014
  • Background: Panax ginseng Meyer is a traditional medicinal plant famous for its strong therapeutic effects and serves as an important herbal medicine. To understand and manipulate genes involved in secondary metabolic pathways including ginsenosides, transcriptome profiling of P. ginseng is essential. Methods: RNA-seq analysis of adventitious roots of two P. ginseng cultivars, Chunpoong (CP) and Cheongsun (CS), was performed using the Illumina HiSeq platform. After transcripts were assembled, expression profiling was performed. Results: Assemblies were generated from ~85 million and ~77 million high-quality reads from CP and CS cultivars, respectively. A total of 35,527 and 27,716 transcripts were obtained from the CP and CS assemblies, respectively. Annotation of the transcriptomes showed that approximately 90% of the transcripts had significant matches in public databases.We identified several candidate genes involved in ginsenoside biosynthesis. In addition, a large number of transcripts (17%) with different gene ontology designations were uniquely detected in adventitious roots compared to normal ginseng roots. Conclusion: This study will provide a comprehensive insight into the transcriptome of ginseng adventitious roots, and a way for successful transcriptome analysis and profiling of resource plants with less genomic information. The transcriptome profiling data generated in this study are available in our newly created adventitious root transcriptome database (http://im-crop.snu.ac.kr/transdb/index.php) for public use.