• 제목/요약/키워드: RNA Stability

검색결과 205건 처리시간 0.028초

The multifunctional RNA-binding protein hnRNPK is critical for the proliferation and differentiation of myoblasts

  • Xu, Yongjie;Li, Rui;Zhang, Kaili;Wu, Wei;Wang, Suying;Zhang, Pengpeng;Xu, Haixia
    • BMB Reports
    • /
    • 제51권7호
    • /
    • pp.350-355
    • /
    • 2018
  • HnRNPK is a multifunctional protein that participates in chromatin remodeling, transcription, RNA splicing, mRNA stability and translation. Here, we uncovered the function of hnRNPK in regulating the proliferation and differentiation of myoblasts. hnRNPK was mutated in the C2C12 myoblast cell line using the CRISPR/Cas9 system. A decreased proliferation rate was observed in hnRNPK-mutated cells, suggesting an impaired proliferation phenotype. Furthermore, increased G2/M phase, decreased S phase and increased sub-G1 phase cells were detected in the hnRNPK-mutated cell lines. The expression analysis of key cell cycle regulators indicated mRNA of Cyclin A2 was significantly increased in the mutant myoblasts compared to the control cells, while Cyclin B1, Cdc25b and Cdc25c were decreased sharply. In addition to the myoblast proliferation defect, the mutant cells exhibited defect in myotube formation. The myotube formation marker, myosin heavy chain (MHC), was decreased sharply in hnRNPK-mutated cells compared to control myoblasts during differentiation. The deficiency in hnRNPK also resulted in the repression of Myog expression, a key myogenic regulator during differentiation. Together, our data demonstrate that hnRNPK is required for myoblast proliferation and differentiation and may be an essential regulator of myoblast function.

Genetic Variation in the ABCB1 Gene May Lead to mRNA Level Chabge: Application to Gastric Cancer Cases

  • Mansoori, Maryam;Golalipour, Masoud;Alizadeh, Shahriar;Jahangirerad, Ataollah;Khandozi, Seyed Reza;Fakharai, Habibollah;Shahbazi, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8467-8471
    • /
    • 2016
  • Background: One of the major mechanisms for drug resistance is associated with altered anticancer drug transport, mediated by the human-adenosine triphosphate binding cassette (ABC) transporter superfamily proteins. The overexpression of adenosine triphosphate binding cassette, sub-family B, member 1 (ABCB1) by multidrug-resistant cancer cells is a serious impediment to chemotherapy. In our study we have studied the possibility that structural single-nucleotide polymorphisms (SNP) are the mechanism of ABCB1 overexpression. Materials and Methods: A total of 101 gastric cancer multidrug resistant cases and 100 controls were genotyped with sequence-specific primed PCR (SSP-PCR). Gene expression was evaluated for 70 multidrug resistant cases and 54 controls by real time PCR. The correlation between the two groups was based on secondary structures of RNA predicted by bioinformatics tool. Results: The results of genotyping showed that among 3 studied SNPs, rs28381943 and rs2032586 had significant differences between patient and control groups but there were no differences in the two groups for C3435T. The results of real time PCR showed over-expression of ABCB1 when we compared our data with each of the genotypes in average mode. Prediction of secondary structures in the existence of 2 related SNPs (rs28381943 and rs2032586) showed that the amount of ${\Delta}G$ for original mRNA is higher than the amount of ${\Delta}G$ for the two mentioned SNPs. Conclusions: We have observed that 2 of our studied SNPs (rs283821943 and rs2032586) may elevate the expression of ABCB1 gene, through increase in mRNA stability, while this was not the case for C3435T.

케모카인 KC 유전자 발현에 대한 Interleukin-10의 억제작용 (The Effect of Interleukin-10 on KC Gene Expression in Mouse Peritoneal Macrophages)

  • 김희선
    • Journal of Yeungnam Medical Science
    • /
    • 제15권1호
    • /
    • pp.47-54
    • /
    • 1998
  • 본 실험은 Brewer thioglycollate 배양액으로 자극시킨 뒤 분리된 마우스 복강내 대식세포를 LPS로 자극하여 이들로 부터 발현되는 케모카인 KC에 대한 IL-10의 KC 유전자 발현 억제효과에 대한 실험을 실시하여 다음과 같은 결과를 얻었다. 1. LPS에 의해 유도되는 KC 유전자 발현은 IL-10에 의하여 현저히 억제되며 IL-10의 억제작용은 반응 2시간대에 나타나는 지연성 반응을 보였다. 2. Nuclear run-on 실험의 결과 IL-10의 KC 유전자 발현 억제작용은 KC 유전자의 전사단계와는 무관함을 확인하였다. 따라서, IL-10의 KC 유전자 발현 억제기전을 명확히 이해하기 위하여 KC mRNA decay 실험과 반응시간에 따른 KC 단백질 생성 수준에 대한 실험이 진행되어야 할 것으로 생각된다.

  • PDF

Effect of BIS depletion on HSF1-dependent transcriptional activation in A549 non-small cell lung cancer cells

  • Yun, Hye Hyeon;Baek, Ji-Ye;Seo, Gwanwoo;Kim, Yong Sam;Ko, Jeong-Heon;Lee, Jeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권4호
    • /
    • pp.457-465
    • /
    • 2018
  • The expression of BCL-2 interacting cell death suppressor (BIS), an anti-stress or anti-apoptotic protein, has been shown to be regulated at the transcriptional level by heat shock factor 1 (HSF1) upon various stresses. Recently, HSF1 was also shown to bind to BIS, but the significance of these protein-protein interactions on HSF1 activity has not been fully defined. In the present study, we observed that complete depletion of BIS using a CRISPR/Cas9 system in A549 non-small cell lung cancer did not affect the induction of heat shock protein (HSP) 70 and HSP27 mRNAs under various stress conditions such as heat shock, proteotoxic stress, and oxidative stress. The lack of a functional association of BIS with HSF1 activity was also demonstrated by transient downregulation of BIS by siRNA in A549 and U87 glioblastoma cells. Endogenous BIS mRNA levels were significantly suppressed in BIS knockout (KO) A549 cells compared to BIS wild type (WT) A549 cells at the constitutive and inducible levels. The promoter activities of BIS and HSP70 as well as the degradation rate of BIS mRNA were not influenced by depletion of BIS. In addition, the expression levels of the mutant BIS construct, in which 14 bp were deleted as in BIS-KO A549 cells, were not different from those of the WT BIS construct, indicating that mRNA stability was not the mechanism for autoregulation of BIS. Our results suggested that BIS was not required for HSF1 activity, but was required for its own expression, which involved an HSF1-independent pathway.

출아효모의 세포주기동안 DNA 상해에 의한 발현 유도에 미치는 DPB11 유전자의 영향 (Effect of DPBll Gene for the Transcriptional Induction by DNA Damage During Cell Cycle in Saccharomyces cerevisiae)

  • 선우양일;임선희;배호정;김중현;김은아;김승일;김수현;박정은;김재우
    • 미생물학회지
    • /
    • 제38권2호
    • /
    • pp.96-102
    • /
    • 2002
  • S기 checkpoint기작은 DNA복제 저해나 DNA상해 등에 반응하여, S기 세포주기 정지를 일으키거나 상해 회복에 관련된 유전자들의 전사가 유도됨으로서 진핵세포에서의 유전적인 안정성을 유지한다. 이러한 반응에 대한것ba11 변이주의 결손을 확인하기 위해서, nPB11 (DNA polymerase B possible subunit)유전자의 과다발현 효과에 대해 조사하고, HU (Hydroxyurea)와 MMS (Methyl methanesulfonate)에 대한 감수성 및 DNA상해 물질에 의한 RNR3 (Ribonulectide reductase) mRNA의 전사 유도를 조사하였다. RNR3 mRNA의 전사는 DNA합성 저해에 의해 발생한 스트레스나 화학물질에 의한 직접적 인 DNA상해 등에 의해 유도되어진다. 그 결과, dpb11-1변이주는 DNA상해 물질에 감수성을 나타내었고, RNR3 mRNA전사유도 또한 야생형 균주에 비해 약 40% 정도 감소를 나타내었다. 더욱이 dpb2-1 균주에서도 이와 동일한 결과를 얻었다. 그러므로 DPB2와 DPB11 유전자는 복제에 대한 sensor로서, 복제 정지 요인에 대한 세포주기 반응과 전사 조절에 모두 작용하는 것으로 사료된다.

갑상선자극호르몬에 의한 분자\ulcorner페론 ERp29 유전자의 발현 (A Gene Encoding Endoplasmic Reticulum Resident 29 kDa Protein is Regulated by TSH-Dependently at the Transcription Level)

  • 박수정;이웅희;구태원;윤은영;황재삼;김호;송민호;권오규
    • 생명과학회지
    • /
    • 제10권2호
    • /
    • pp.150-156
    • /
    • 2000
  • This experiment was performed to evaluate the effect of TSH (thyroid-stimulating) on the ERp29 (endoplasmic reticulum resident 29 kDa protein) gene expression in the rat thyrocytes of FRTL-5 cells. Although ERp29 mRNA was constantly expressed, its expression began to increase remarkably from 10-9 M TSH. and its maximum expression was at 5×10-9 M TSH (about 3.5 fold). On the other hand, the effect of TSH on the abundance of ERp29 mRNA started within 6 h, and peaked at 8 h (about 2.5 fold). Actinomycin D (transcription inhibitor) strongly blocked this effect while cycloheximide (translation inhibitor) did not. The half-life of ERp29 mRNA was about 4.5 h in the presence or absence of TSH that was not affected by the stability of ERp29 mRNA. The effect of TSH on the ERp29 gene expression was specific, while other growth factors (transfferin, insulin, and hydrocortisone) did not alter its expression. Our data indicate for the first time that the expression of ERp29 is regulated transcriptionally by TSH in the thyrocytes.

  • PDF

Global Analysis of RNA Stability in Bacteria

  • Lee, Kang-Seok;Xiaoming Zhan;Gaol, Jun-Jun;George Georgiou;Stanley N. Cohen
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2004년도 Annual Meeting BioExibition International Symposium
    • /
    • pp.242-244
    • /
    • 2004
  • PDF

Study of Viral Effects of the Mycovirus (LeV) and Virus-Free Commercial Line in the Edible Mushroom Lentinula edodes

  • Kim, Jung-Mi;Song, Ha-Yeon;Yun, Suk-Hyun;Lee, Hyun-Suk;Ko, Han-Kyu;Kim, Dae-Hyuk
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 추계학술대회 및 정기총회
    • /
    • pp.37-37
    • /
    • 2015
  • dsRNA was found in malformed cultures of Lentinula edodes strain FMRI0339, one of the three most popular sawdust cultivated commercial strains of shiitake, and was also found in healthy-looking fruiting bodies and actively growing mycelia. Cloning of the partial genome of the dsRNA revealed the presence of the RdRp sequence of a novel L. edodes mycovirus (LeV), and sequence comparison of the cloned amplicon showed an identical sequence to known RdRp genes of LeV found in strain HKA. The meiotic stability of dsRNA was examined by measuring the ratio of the presence of dsRNA among sexual monokaryotic progeny. More than 40% of the monokaryotic progeny still contained the dsRNA, indicating the persistence of dsRNA during sexual reproduction. Comparing the mycelia growth of monokaryotic progeny suggested that, although variations in the growth rate existed among progeny and virus infection was observed in highly actively growing progeny, there appeared to be a tendency toward a lower frequency of virus incidence in actively growing progeny. This study attempted to cure the edible mushroom L. edodes strain FMRI0339 of the L. edodes mycovirus (LeV) in order to obtain an isogenic virus-free fungal strain as well as a virus-infected strain for comparison. Mycelial fragmentation, followed by being spread on a plate with serial dilutions resulted in a virus-free colony. Viral absence was confirmed with gel electrophoresis after dsRNA-specific virus purification, Northern blot analysis, and PCR using reverse transcriptase (RT-PCR). Once cured, all of fungal cultures remained virus-free over the next two years. Interestingly, the viral titer of LeV varied depending on the culture condition. The titer from the plate culture showed at least a 20-fold higher concentration than that grown in the liquid culture. However, the reduced virus titer in the liquid culture was recovered by transferring the mycelia to a plate containing the same medium. In addition, oxygen-depleted culture conditions resulted in a significant decrease of viral concentration, but not to the extent seen in the submerged liquid culture. Although no $discernable phenotypic changes in colony morphology were observed, virus-cured strains showed significantly higher growth rates and mycelial mass than virus-infected strains. We were also explored effects of LeV on fruiting body formation and mushroom yield. The fruiting body formation yield of virus-free L. edodes was larger than virus-infected L. edodes. These results indicate that LeV infection has a deleterious effect on mycelial growth and fruiting body formation. In addition, we have been investigated host-parasite interaction between L. edodes and its mycovirus interaction to study viral mechanism by establishment of proteomics.

  • PDF

Effect of Non-indigenous Bacterial Introductions on Rhizosphere Microbial Community

  • Nogrado, Kathyleen;Ha, Gwang-Su;Yang, Hee-Jong;Lee, Ji-Hoon
    • 한국환경농학회지
    • /
    • 제40권3호
    • /
    • pp.194-202
    • /
    • 2021
  • BACKGROUND: Towards achievement of sustainable agriculture, using microbial inoculants may present promising alternatives without adverse environmental effects; however, there are challenging issues that should be addressed in terms of effectiveness and ecology. Viability and stability of the bacterial inoculants would be one of the major issues in effectiveness of microbial pesticide uses, and the changes within the indigenous microbial communities by the inoculants would be an important factor influencing soil ecology. Here we investigated the stability of the introduced bacterial strains in the soils planted with barley and its effect on the diversity shifts of the rhizosphere soil bacteria. METHODS AND RESULTS: Two different types of bacterial strains of Bacillus thuringiensis and Shewanella oneidensis MR-1 were inoculated to the soils planted with barley. To monitor the stability of the inoculated bacterial strains, genes specific to the strains (XRE and mtrA) were quantified by qPCR. In addition, bacterial community analyses were performed using v3-v4 regions of 16S rRNA gene sequences from the barley rhizosphere soils, which were analyzed using Illumina MiSeq system and Mothur. Alpha- and beta-diversity analyses indicated that the inoculated rhizosphere soils were grouped apart from the uninoculated soil, and plant growth also may have affected the soil bacterial diversity. CONCLUSION: Regardless of the survival of the introduced non-native microbes, non-indigenous bacteria may influence the soil microbial community and diversity.

Regulation of Notch1/NICD and Hes1 Expressions by GSK-3α/β

  • Jin, Yun Hye;Kim, Hangun;Oh, Minsoo;Ki, Hyunkyung;Kim, Kwonseop
    • Molecules and Cells
    • /
    • 제27권1호
    • /
    • pp.15-19
    • /
    • 2009
  • Notch signaling is controlled at multiple levels. In particular, stabilized Notch receptor activation directly affects the transcriptional activations of Notch target genes. Although some progress has been made in terms of defining the regulatory mechanism that alters Notch stability, it has not been determined whether Notch1/NICD stability is regulated by $GSK-3{\alpha}$. Here, we show that Notch1/NICD levels are significantly regulated by $GSK-3{\beta}$ and by $GSK-3{\alpha}$. Treatment with LiCl (a specific GSK-3 inhibitor) or the overexpression of the kinase-inactive forms of $GSK-3{\alpha}/{\beta}$ significantly increased Notch1/NICD levels. Endogenous NICD levels were also increased by either $GSK-3{\alpha}/{\beta}$- or $GSK-3{\alpha}$-specific siRNA. Furthermore, it was found that $GSK-3{\alpha}$ binds to Notch1. Deletion analysis showed that at least three Thr residues in Notch1 (Thr-1851, 2123, and 2125) are critical for its response to LiCl, which increased not only the transcriptional activity of endogenous NICD but also Hes1 mRNA levels. Taken together, our results indicate that $GSK-3{\alpha}$ is a negative regulator of Notch1/NICD.