• Title/Summary/Keyword: RNA Sequencing

Search Result 1,205, Processing Time 0.026 seconds

Transfer RNA-Derived Small Non-Coding RNA: Dual Regulator of Protein Synthesis

  • Kim, Hak Kyun
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.687-692
    • /
    • 2019
  • Transfer RNA-derived small RNAs (tsRNAs) play a role in various cellular processes. Accumulating evidence has revealed that tsRNAs are deeply implicated in human diseases, such as various cancers and neurological disorders, suggesting that tsRNAs should be investigated to develop novel therapeutic intervention. tsRNAs provide more complexity to the physiological role of transfer RNAs by repressing or activating protein synthesis with distinct mechanisms. Here, we highlight the detailed mechanism of tsRNA-mediated dual regulation in protein synthesis and discuss the necessity of novel sequencing technology to learn more about tsRNAs.

Sequence Analysis, Molecular Cloning and Restriction Mapping of Mitochondreal Genome of Domesticated Silkworm, Bombyx mori (누에 미토콘드리아 유전체의 제한효소 지도작성, 클로닝 및 염기서열 분석)

  • 이진성;성승현;김용성;서동상
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.1
    • /
    • pp.14-23
    • /
    • 2000
  • The mitochondrial genome of domesticated silkworm (Bombyx mori) was mapped with five restriction endonucleases (BamHI, EcoRI, HindIII, PstI and XbaI), the entire genome was cloned with HindIII and EcoRI. From the end sequencing results of 5$^1$and 3$^1$region for full genome set of eleven mitochondrial clones, the seven mitochondrial genes (NADH dehydrogenase 6, ATPase 6, ATPase 8, tRN $A^{Lys}$, tRN $A^{Asp}$, tRN $A^{Thr}$ and tRN $A^{Phe}$ of mori were identified on the basis of their nucleotide sequence homology. The nucleotide composition of NADH dehydrogenase 6 was heavily biased towards adenine and thymine, which accounted for 87.76%. On basis of the sequence similarity with published tRNA genes from six insect species, the tRN $A^{Lys}$, tRN $A^{Asp}$ and tRN $A^{Thr}$ were showed stable canonical clover-leaf tRNA structures with acceptible anticodons. However, both the DHU and T$\psi$C arms of tRN $A^{Phe}$ could not form any stable stem-loop structure. The two overlapping gene pairs (tRN $A^{Lys}$ -tRN $A^{ASP}$ and ATPase8-ATPase6) were found from our sequencing results. The genes are encoded on the same strad. ATPase8 and ATPase6 overlaps (ATGATAA) which are a single example of overlapping events between abutted protein-coding genes are common, and there is evidence that the two proteins are transcribed from a single bicistronic message by initiation at 5$^1$terminal start site for ATPase8 and at an internal start site for ATPase6. Ultimately, this result will provide assistance in designing oligo-nucleotides for PCR amplification, and sequencing the specific mitochondrial genes for phylogenetics of geographic races, genetically improved silkworm strains and wild silkworm (mandarina) which is estimated as ancestal of domesticated silkworm.sticated silkworm.

  • PDF

The Peripheral Immune Landscape in a Patient with Myocarditis after the Administration of BNT162b2 mRNA Vaccine

  • Yoon, Bo Kyung;Oh, Tae Gyu;Bu, Seonghyeon;Seo, Kyung Jin;Kwon, Se Hwan;Lee, Ji Yoon;Kim, Yeumin;Kim, Jae-woo;Ahn, Hyo-Suk;Fang, Sungsoon
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.738-748
    • /
    • 2022
  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has posed a serious threat to global public health. A novel vaccine made from messenger RNA (mRNA) has been developed and approved for use at an unprecedented pace. However, an increased risk of myocarditis has been reported after BNT162b2 mRNA vaccination due to unknown causes. In this study, we used single-cell RNA sequencing and single-cell T cell receptor sequencing analyses of peripheral blood mononuclear cells (PBMCs) to describe, for the first time, changes in the peripheral immune landscape of a patient who underwent myocarditis after BNT162b2 vaccination. The greatest changes were observed in the transcriptomic profile of monocytes in terms of the number of differentially expressed genes. When compared to the transcriptome of PBMCs from vaccinated individuals without complications, increased expression levels of IL7R were detected in multiple cell clusters. Overall, results from this study can help advance research into the pathogenesis of BNT162b2-induced myocarditis.

Differential microRNA Expression by Solexa Sequencing in the Sera of Ovarian Cancer Patients

  • Ji, Ting;Zheng, Zhi-Guo;Wang, Feng-Mei;Xu, Li-Jian;Li, Lu-Feng;Cheng, Qi-Hui;Guo, Jiang-Feng;Ding, Xian-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1739-1743
    • /
    • 2014
  • MicroRNAs are a class of small noncoding RNA which play important regulatory roles in a variety of cancers. MiRNA-specific expression profiles have been reported for several pathological conditions. In this study, we combined large scale parallel Solexa sequencing to identify 11 up-regulated miRNAs and 19 down-regulated miRNAs with computational techniques in the sera of ovarian cancer patients while using healthy serum as the control. Among the above, four miRNAs (miR-22, miR-93, miR-106b, miR-451) were validated by quantitative RT-PCR and found to be significantly aberrantly expressed in the serum of ovarian cancer patients (P<0.05). There were no significant differences between samples from cancer stage I/II and III/IV. However, the levels of miR-106b (p=0.003) and miR-451 (p=0.007) were significantly different in those patients under and over 51 yearsof age. MiR-451 and miR-93 were also specific when analyzed with reference to different levels of CA125. This study shows that Solexa sequencing provides a promising method for cancer-related miRNA profiling, and selectively expressed miRNAs could be used as potential serum-based biomarkers for ovarian cancer diagnosis.

Muscle differentiation induced up-regulation of calcium-related gene expression in quail myoblasts

  • Park, Jeong-Woong;Lee, Jeong Hyo;Kim, Seo Woo;Han, Ji Seon;Kang, Kyung Soo;Kim, Sung-Jo;Park, Tae Sub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1507-1515
    • /
    • 2018
  • Objective: In the poultry industry, the most important economic traits are meat quality and carcass yield. Thus, many studies were conducted to investigate the regulatory pathways during muscle differentiation. To gain insight of muscle differentiation mechanism during growth period, we identified and validated calcium-related genes which were highly expressed during muscle differentiation through mRNA sequencing analysis. Methods: We conducted next-generation-sequencing (NGS) analysis of mRNA from undifferentiated QM7 cells and differentiated QM7 cells (day 1 to day 3 of differentiation periods). Subsequently, we obtained calcium related genes related to muscle differentiation process and examined the expression patterns by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Results: Through RNA sequencing analysis, we found that the transcription levels of six genes (troponin C1, slow skeletal and cardiac type [TNNC1], myosin light chain 1 [MYL1], MYL3, phospholamban [PLN], caveolin 3 [CAV3], and calsequestrin 2 [CASQ2]) particularly related to calcium regulation were gradually increased according to days of myotube differentiation. Subsequently, we validated the expression patterns of calcium-related genes in quail myoblasts. These results indicated that TNNC1, MYL1, MYL3, PLN, CAV3, CASQ2 responded to differentiation and growth performance in quail muscle. Conclusion: These results indicated that calcium regulation might play a critical role in muscle differentiation. Thus, these findings suggest that further studies would be warranted to investigate the role of calcium ion in muscle differentiation and could provide a useful biomarker for muscle differentiation and growth.

Identification of Lactic Acid Bacteria in Galchi- and Myeolchi-Jeotgal by 16S rRNA Gene Sequencing, MALDI-TOF Mass Spectrometry, and PCR-DGGE

  • Lee, Yoonju;Cho, Youngjae;Kim, Eiseul;Kim, Hyun-Joong;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1112-1121
    • /
    • 2018
  • Jeotgal is a Korean traditional fermented seafood with a high concentration of salt. In this study, we isolated lactic acid bacteria (LAB) from galchi (Trichiurus lepturus, hairtail) and myeolchi (Engraulis japonicas, anchovy) jeotgal on MRS agar and MRS agar containing 5% NaCl (MRS agar+5% NaCl), and identified them by using 16S rRNA gene sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as culture-dependent methods. We also performed polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) as a culture-independent method to identify bacterial communities. Five samples of galchi-jeotgal and seven samples of myeolchi-jeotgal were collected from different regions in Korea. A total of 327 and 395 colonies were isolated from the galchi- and myeolchi-jeotgal samples, respectively. 16S rRNA gene sequencing and MALDI-TOF MS revealed that the genus Pediococcus was predominant on MRS agar, and Tetragenococcus halophilus on MRS agar+5% NaCl. PCR-DGGE revealed that T. halophilus, Tetragenococcus muriaticus, and Lactobacillus sakei were predominant in both types of jeotgal. T. halophilus was detected in all samples. Even though the same species were identified by both culture-dependent and -independent methods, many species identified by the culture-dependent methods were not in the bacterial list identified by the culture-independent methods. The distribution of bacteria in galchi-jeotgal was more diverse than in myeolchi-jeotgal. The diverse LAB in galchi- and myeolchi-jeotgals can be further studied as candidates for starter cultures to produce fermented foods.

Current Challenges in Bacterial Transcriptomics

  • Cho, Suhyung;Cho, Yoobok;Lee, Sooin;Kim, Jayoung;Yum, Hyeji;Kim, Sun Chang;Cho, Byung-Kwan
    • Genomics & Informatics
    • /
    • v.11 no.2
    • /
    • pp.76-82
    • /
    • 2013
  • Over the past decade or so, dramatic developments in our ability to experimentally determine the content and function of genomes have taken place. In particular, next-generation sequencing technologies are now inspiring a new understanding of bacterial transcriptomes on a global scale. In bacterial cells, whole-transcriptome studies have not received attention, owing to the general view that bacterial genomes are simple. However, several recent RNA sequencing results are revealing unexpected levels of complexity in bacterial transcriptomes, indicating that the transcribed regions of genomes are much larger and complex than previously anticipated. In particular, these data show a wide array of small RNAs, antisense RNAs, and alternative transcripts. Here, we review how current transcriptomics are now revolutionizing our understanding of the complexity and regulation of bacterial transcriptomes.

Major histocompatibility complex genes exhibit a potential immunological role in mixed Eimeria-infected broiler cecum analyzed using RNA sequencing

  • Minjun Kim;Thisarani Kalhari Ediriweera;Eunjin Cho;Yoonji Chung;Prabuddha Manjula;Myunghwan Yu;John Kariuki Macharia;Seonju Nam;Jun Heon Lee
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.993-1000
    • /
    • 2024
  • Objective: This study was conducted to investigate the differential expression of the major histocompatibility complex (MHC) gene region in Eimeria-infected broiler. Methods: We profiled gene expression of Eimeria-infected and uninfected ceca of broilers sampled at 4, 7, and 21 days post-infection (dpi) using RNA sequencing. Differentially expressed genes (DEGs) between two sample groups were identified at each time point. DEGs located on chicken chromosome 16 were used for further analysis. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis was conducted for the functional annotation of DEGs. Results: Fourteen significant (false discovery rate <0.1) DEGs were identified at 4 and 7 dpi and categorized into three groups: MHC-Y class I genes, MHC-B region genes, and non-MHC genes. In Eimeria-infected broilers, MHC-Y class I genes were upregulated at 4 dpi but downregulated at 7 dpi. This result implies that MHC-Y class I genes initially activated an immune response, which was then suppressed by Eimeria. Of the MHC-B region genes, the DMB1 gene was upregulated, and TAP-related genes significantly implemented antigen processing for MHC class I at 4 dpi, which was supported by KEGG pathway analysis. Conclusion: This study is the first to investigate MHC gene responses to coccidia infection in chickens using RNA sequencing. MHC-B and MHC-Y genes showed their immune responses in reaction to Eimeria infection. These findings are valuable for understanding chicken MHC gene function.

Single-cell and spatial transcriptomics approaches of cardiovascular development and disease

  • Roth, Robert;Kim, Soochi;Kim, Jeesu;Rhee, Siyeon
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.393-399
    • /
    • 2020
  • Recent advancements in the resolution and throughput of single-cell analyses, including single-cell RNA sequencing (scRNA-seq), have achieved significant progress in biomedical research in the last decade. These techniques have been used to understand cellular heterogeneity by identifying many rare and novel cell types and characterizing subpopulations of cells that make up organs and tissues. Analysis across various datasets can elucidate temporal patterning in gene expression and developmental cues and is also employed to examine the response of cells to acute injury, damage, or disruption. Specifically, scRNA-seq and spatially resolved transcriptomics have been used to describe the identity of novel or rare cell subpopulations and transcriptional variations that are related to normal and pathological conditions in mammalian models and human tissues. These applications have critically contributed to advance basic cardiovascular research in the past decade by identifying novel cell types implicated in development and disease. In this review, we describe current scRNA-seq technologies and how current scRNA-seq and spatial transcriptomic (ST) techniques have advanced our understanding of cardiovascular development and disease.

Genetic Stock Identification of Common Carp (Cyprinus carpio) by Detection of Intraspecific DNA Sequence Variation in the Mitochondrial 12S rRNA Gene (미토콘드리아 12S rRNA 유전자 변이 조사를 통한 잉어(Cyprinus carpio)의 유전학적 동정)

  • 남윤권;주수동;정창화;노충환;조재윤;김동수
    • Journal of Aquaculture
    • /
    • v.10 no.4
    • /
    • pp.403-407
    • /
    • 1997
  • Intraspecific sequence variation was detected by polymerase chain reaction (PCR) and direct sequencing of a 350-nucleotide region of the mitochondrial 12S rRNA gene of two natural populations (Han River and Nakdong River) and one hatchery stock (Jinhae Inland Fisheries Institute) of local strain common carp, one Israeli strain of common carp stock from Pukyong National University (PKU), and one hybrid between Israeli strain of common carp female and local strain common carp male from PKU stock. There is little variation in 350 bases of the mitochondrial 12S rRNA gene sequences among 2 natural and 1 hatchery local strain common carp populatins, representing abut 7 to 20 nucleotide differences (less than 6%). The sequence of specimens from Han River was more similar to that from Nakdong River (identity=98.0%) than to that from Jinhae Inland Fisheries Institute (identity=96.3%). Sequence variation between Israeli strain and wild local strain common carp was higher than the variation within natural stocks. The level of variation was ranged from 15.7 to 17.7%. The hybrid showed very similar nucleotide4 sequence of 12S rRNA gene to the sequence of Israeli strain with the identity of 98.9%.

  • PDF